Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
13 "mRNA"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Secretions from Serratia marcescens Inhibit the Growth and Biofilm Formation of Candida spp. and Cryptococcus neoformans
Caiyan Xin , Fen Wang , Jinping Zhang , Quan Zhou , Fangyan Liu , Chunling Zhao , Zhangyong Song
J. Microbiol. 2023;61(2):221-232.   Published online February 21, 2023
DOI: https://doi.org/10.1007/s12275-022-00007-3
  • 60 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract
Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients. Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp. and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid chromatography–linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.

Citations

Citations to this article as recorded by  
  • Antifungal activities of Equol against Candida albicans in vitro and in vivo
    Fen Wang, Jinping Zhang, Qian Zhang, Zhangyong Song, Caiyan Xin
    Virulence.2024;[Epub]     CrossRef
  • Antifungal Effect of Vitamin D3 against Cryptococcus neoformans Coincides with Reduced Biofilm Formation, Compromised Cell Wall Integrity, and Increased Generation of Reactive Oxygen Species
    Jian Huang, Junwen Lei, Anni Ge, Wei Xiao, Caiyan Xin, Zhangyong Song, Jinping Zhang
    Journal of Fungi.2023; 9(7): 772.     CrossRef
Caspase-3 inhibitor inhibits enterovirus D68 production
Wenbo Huo , Jinghua Yu , Chunyu Liu , Ting Wu , Yue Wang , Xiangling Meng , Fengmei Song , Shuxia Zhang , Ying Su , Yumeng Liu , Jinming Liu , Xiaoyan Yu , Shucheng Hua
J. Microbiol. 2020;58(9):812-820.   Published online September 1, 2020
DOI: https://doi.org/10.1007/s12275-020-0241-y
  • 57 View
  • 0 Download
  • 8 Web of Science
  • 8 Crossref
AbstractAbstract
Enterovirus D68 (EVD68) is an emerging pathogen that recently caused a large worldwide outbreak of severe respiratory disease in children. However, the relationship between EVD68 and host cells remains unclear. Caspases are involved in cell death, immune response, and even viral production. We found that caspase-3 was activated during EVD68 replication to induce apoptosis. Caspase-3 inhibitor (Z-DEVDFMK) inhibited viral production, protected host cells from the cytopathic effects of EVD68 infection, and prevented EVD68 from regulating the host cell cycle at G0/G1. Meanwhile, caspase-3 activator (PAC-1) increased EVD68 production. EVD68 infection therefore activates caspase-3 for virus production. This knowledge provides a potential direction for the prevention and treatment of disease related to EVD68.

Citations

Citations to this article as recorded by  
  • Non-Polio Enterovirus Inhibitors: Scaffolds, Targets, and Potency─What’s New?
    Hugo Fernando Georges Roux, Franck Touret, Pascal Rathelot, Pietro Sciò, Antonio Coluccia, Patrice Vanelle, Manon Roche
    ACS Infectious Diseases.2024;[Epub]     CrossRef
  • Mode of cell death in the penile cavernous tissue of type 1 diabetes mellitus rats
    Jing Li, Qilan Jiang, Jun Jiang, Rui Jiang
    The Journal of Sexual Medicine.2024; 21(8): 652.     CrossRef
  • MDA5 Enhances Invasive Candida albicans Infection by Regulating Macrophage Apoptosis and Phagocytosis/Killing Functions
    Yayun Chen, Qian Jiang, Furong Qing, Junxia Xue, Qiuxiang Xiao, Wenji He, Lina Sui, Zhiping Liu
    Inflammation.2024; 47(1): 191.     CrossRef
  • Caspase-8 activation regulates enterovirus D68 infection-induced inflammatory response and cell death
    Yuanyuan Zhou, Chongtao Zhang, Yuhan Zhang, Fei Li, Jun Shen
    Biosafety and Health.2024; 6(3): 171.     CrossRef
  • Enterovirus D68 Infection Induces TDP-43 Cleavage, Aggregation, and Neurotoxicity
    Lili Zhang, Jiaxin Yang, Huili Li, Zhe Zhang, Zhilin Ji, Lirong Zhao, Wei Wei, Rebecca Ellis Dutch
    Journal of Virology.2023;[Epub]     CrossRef
  • Inhibitory effect of tanshinone IIA, resveratrol and silibinin on enterovirus 68 production through inhibiting ATM and DNA-PK pathway
    Ying Su, Ting Wu, Xiao-Yan Yu, Wen-Bo Huo, Shao-Hua Wang, Chen Huan, Yu-Meng Liu, Jin-Ming Liu, Min-Na Cui, Xin-Hua Li, Jing-Hua Yu
    Phytomedicine.2022; 99: 153977.     CrossRef
  • Urolithin A inhibits enterovirus 71 replication and promotes autophagy and apoptosis of infected cells in vitro
    Shengyu Wang, Junhua Qiao, Yaping Chen, Langfei Tian, Xin Sun
    Archives of Virology.2022; 167(10): 1989.     CrossRef
  • Mst1/2-ALK promotes NLRP3 inflammasome activation and cell apoptosis during Listeria monocytogenes infection
    Aijiao Gao, Huixin Tang, Qian Zhang, Ruiqing Liu, Lin Wang, Yashan Liu, Zhi Qi, Yanna Shen
    Journal of Microbiology.2021; 59(7): 681.     CrossRef
RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli
Jaejin Lee , Dong-Ho Lee , Che Ok Jeon , Kangseok Lee
J. Microbiol. 2019;57(10):910-917.   Published online September 30, 2019
DOI: https://doi.org/10.1007/s12275-019-9354-6
  • 48 View
  • 0 Download
  • 10 Web of Science
  • 9 Crossref
AbstractAbstract
Studies have shown that many enzymes involved in glycolysis are upregulated in Escherichia coli endoribonuclease G (rng) null mutants. However, the molecular mechanisms underlying the RNase G-associated regulation of glycolysis have not been characterized. Here, we show that RNase G cleaves the 5􍿁􀁇untranslated region of triosephosphate isomerase A (tpiA) mRNA, leading to destabilization of the mRNA in E. coli. Nucleotide substitutions within the RNase G cleavage site in the genome resulted in altered tpiA mRNA stability, indicating that RNase G activity influences tpiA mRNA abundance. In addition, we observed that tpiA expression was enhanced, whereas that of RNase G was decreased, in E. coli cells grown anaerobically. Our findings suggest that RNase G negatively regulates tpiA mRNA abundance in response to oxygen availability in E. coli.

Citations

Citations to this article as recorded by  
  • Relaxed Cleavage Specificity of Hyperactive Variants of Escherichia coli RNase E on RNA I
    Dayeong Bae, Hana Hyeon, Eunkyoung Shin, Ji-Hyun Yeom, Kangseok Lee
    Journal of Microbiology.2023; 61(2): 211.     CrossRef
  • Transcript-specific selective translation by specialized ribosomes bearing genome-encoded heterogeneous rRNAs in V. vulnificus CMCP6
    Younkyung Choi, Minju Joo, Wooseok Song, Minho Lee, Hana Hyeon, Hyun-Lee Kim, Ji-Hyun Yeom, Kangseok Lee, Eunkyoung Shin
    Journal of Microbiology.2022; 60(12): 1162.     CrossRef
  • Regulator of RNase E activity modulates the pathogenicity of Salmonella Typhimurium
    Jaejin Lee, Eunkyoung Shin, Ji-Hyun Yeom, Jaeyoung Park, Sunwoo Kim, Minho Lee, Kangseok Lee
    Microbial Pathogenesis.2022; 165: 105460.     CrossRef
  • Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression
    Minho Lee, Minkyung Ryu, Minju Joo, Young-Jin Seo, Jaejin Lee, Hong-Man Kim, Eunkyoung Shin, Ji-Hyun Yeom, Yong-Hak Kim, Jeehyeon Bae, Kangseok Lee, William Navarre
    PLOS Pathogens.2021; 17(2): e1009263.     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • The effect of two ribonucleases on the production of Shiga toxin and stx-bearing bacteriophages in Enterohaemorrhagic Escherichia coli
    Patricia B. Lodato
    Scientific Reports.2021;[Epub]     CrossRef
  • Regulator of ribonuclease activity modulates the pathogenicity of Vibrio vulnificus
    Jaejin Lee, Eunkyoung Shin, Jaeyeong Park, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(12): 1133.     CrossRef
  • An alternative miRISC targets a cancer‐associated coding sequence mutation in FOXL2
    Eunkyoung Shin, Hanyong Jin, Dae‐Shik Suh, Yongyang Luo, Hye‐Jeong Ha, Tae Heon Kim, Yoonsoo Hahn, Seogang Hyun, Kangseok Lee, Jeehyeon Bae
    The EMBO Journal.2020;[Epub]     CrossRef
  • The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli
    Minho Lee, Minju Joo, Minji Sim, Se-Hoon Sim, Hyun-Lee Kim, Jaejin Lee, Minkyung Ryu, Ji-Hyun Yeom, Yoonsoo Hahn, Nam-Chul Ha, Jang-Cheon Cho, Kangseok Lee
    Scientific Reports.2019;[Epub]     CrossRef
Research Support, N.I.H., Extramural
The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition
Shaleen B. Korch , Vandana Malhotra , Heidi Contreras , Josephine E. Clark-Curtiss
J. Microbiol. 2015;53(11):783-795.   Published online October 28, 2015
DOI: https://doi.org/10.1007/s12275-015-5333-8
  • 48 View
  • 0 Download
  • 39 Crossref
AbstractAbstract
Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (RelMtb): RelBEMtb, RelFGMtb and RelJKMtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelEMtb toxin protein, the impact of RelEMtb on M. tuberculosis physiology and the environmental conditions that regulate all three relMtb modules. RelEMtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelEMtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that relMtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the relMtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelEMtb toxin influences the growth, proteome and morphology of mycobacterial cells.

Citations

Citations to this article as recorded by  
  • Bacterial persisters: molecular mechanisms and therapeutic development
    Hongxia Niu, Jiaying Gu, Ying Zhang
    Signal Transduction and Targeted Therapy.2024;[Epub]     CrossRef
  • Gene Regulatory Mechanism of Mycobacterium Tuberculosis during Dormancy
    Yiduo Liu, Han Li, Dejia Dai, Jiakang He, Zhengmin Liang
    Current Issues in Molecular Biology.2024; 46(6): 5825.     CrossRef
  • Construction and expression of Mycobacterium tuberculosis fusion protein SHR3 and its immunogenicity analysis in combination with various adjuvants
    Zian Zhang, Lifa Xu, Xiaochun Wang, LingYun Kong, Zilun Shi, Qiangsen Zhong, Yun Xu, Jianghong Wang
    Tuberculosis.2024; 145: 102480.     CrossRef
  • Enhancement of mycobacterial pathogenesis by host interferon-γ
    Huynh Tan Hop, Pao-Chi Liao, Hsin-Yi Wu
    Cellular and Molecular Life Sciences.2024;[Epub]     CrossRef
  • Distribution of lineages and type II toxin-antitoxin systems among rifampin-resistant Mycobacterium Tuberculosis Isolates
    Maryam Shafipour, Abdolmajid Mohammadzadeh, Pezhman Mahmoodi, Mahdi Dehghanpour, Ezzat Allah Ghaemi, Francesca Boldrin
    PLOS ONE.2024; 19(10): e0309292.     CrossRef
  • The zoonotic pathogen Wohlfahrtiimonas chitiniclastica – current findings from a clinical and genomic perspective
    Anna Kopf, Boyke Bunk, Thomas Riedel, Percy Schröttner
    BMC Microbiology.2024;[Epub]     CrossRef
  • Genome wide screening to discover novel toxin–antitoxin modules in Mycobacterium indicus pranii; perspective on gene acquisition during mycobacterial evolution
    Aayush Bahl, Roopshali Rakshit, Saurabh Pandey, Deeksha Tripathi
    Biotechnology and Applied Biochemistry.2024;[Epub]     CrossRef
  • PCR Development for Analysis of Some Type II Toxin–Antitoxin Systems, relJK, mazEF3, and vapBC3 Genes, in Mycobacterium tuberculosis and Mycobacterium bovis
    Maryam Shafipour, Abdolmajid Mohammadzadeh, Ezzat Allah Ghaemi, Pezhman Mahmoodi
    Current Microbiology.2024;[Epub]     CrossRef
  • Multitargeting: An Alternative Approach to Tackle Multidrug Resistance in Tuberculosis
    Satakshi Hazra, Risha Hazarika, Sanjukta Patra
    Current Drug Targets.2023; 24(9): 751.     CrossRef
  • Salidroside Attenuates Cisplatin-Induced Ototoxicity: An Experimental Study In Vitro and In Vivo
    Kanglun Jiang, Tan Wang, Zirui Zhao, Lei Zhou, Huaili Jiang, Na Shen, Daquan Wu, Xinsheng Huang
    Journal of Biomedical Nanotechnology.2023; 19(4): 600.     CrossRef
  • The past, present and future of tuberculosis treatment
    Kefan BI, Dan CAO, Cheng DING, Shuihua LU, Hongzhou LU, Guangyu ZHANG, Wenhong ZHANG, Liang LI, Kaijin XU, Lanjuan LI, Ying ZHANG
    Journal of Zhejiang University (Medical Sciences).2022; 51(6): 657.     CrossRef
  • Cellular functions of the ClpP protease impacting bacterial virulence
    Mazen E. Aljghami, Marim M. Barghash, Emily Majaesic, Vaibhav Bhandari, Walid A. Houry
    Frontiers in Molecular Biosciences.2022;[Epub]     CrossRef
  • Comparative Genomic Analysis of the Human Pathogen Wohlfahrtiimonas Chitiniclastica Provides Insight Into the Identification of Antimicrobial Resistance Genotypes and Potential Virulence Traits
    Anna Kopf, Boyke Bunk, Sina M. Coldewey, Florian Gunzer, Thomas Riedel, Percy Schröttner
    Frontiers in Cellular and Infection Microbiology.2022;[Epub]     CrossRef
  • Mycobacterium tuberculosis PknK Substrate Profiling Reveals Essential Transcription Terminator Protein Rho and Two-Component Response Regulators PrrA and MtrA as Novel Targets for Phosphorylation
    Vandana Malhotra, Blessing P. Okon, Akash T. Satsangi, Sumana Das, Uchenna Watson Waturuocha, Atul Vashist, Josephine E. Clark-Curtiss, Deepak Kumar Saini, Amit Singh
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Transcriptional profiling of the stringent response mutant strain E. coli SR reveals enhanced robustness to large‐scale conditions
    Martin Ziegler, Julia Zieringer, Ralf Takors
    Microbial Biotechnology.2021; 14(3): 993.     CrossRef
  • Persistence of Intracellular Bacterial Pathogens—With a Focus on the Metabolic Perspective
    Wolfgang Eisenreich, Thomas Rudel, Jürgen Heesemann, Werner Goebel
    Frontiers in Cellular and Infection Microbiology.2021;[Epub]     CrossRef
  • Mobilome Analysis of Achromobacter spp. Isolates from Chronic and Occasional Lung Infection in Cystic Fibrosis Patients
    Laura Veschetti, Angela Sandri, Cristina Patuzzo, Paola Melotti, Giovanni Malerba, Maria M. Lleò
    Microorganisms.2021; 9(1): 130.     CrossRef
  • Genome‐wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin–antitoxin systems as a major substrate class
    Michal Ziemski, Julia Leodolter, Gabrielle Taylor, Anne Kerschenmeyer, Eilika Weber‐Ban
    The FEBS Journal.2021; 288(1): 99.     CrossRef
  • Evaluating the Potential for Cross-Interactions of Antitoxins in Type II TA Systems
    Chih-Han Tu, Michelle Holt, Shengfeng Ruan, Christina Bourne
    Toxins.2020; 12(6): 422.     CrossRef
  • Targeting Type II Toxin–Antitoxin Systems as Antibacterial Strategies
    Marcin Równicki, Robert Lasek, Joanna Trylska, Dariusz Bartosik
    Toxins.2020; 12(9): 568.     CrossRef
  • Persister cell development among Enterobacteriaceae, Pseudomonadaceae, Mycobacteriaceae and Staphylococcaceae biotypes: A review
    Somanath Behera, Smaranika Pattnaik
    Biocatalysis and Agricultural Biotechnology.2019; 22: 101401.     CrossRef
  • Toxins targeting transfer RNAs: Translation inhibition by bacterial toxin–antitoxin systems
    Lauren R. Walling, J. Scott Butler
    WIREs RNA.2019;[Epub]     CrossRef
  • The relevance of persisters in tuberculosis drug discovery
    Soma Mandal, Samuel Njikan, Anuradha Kumar, Julie V. Early, Tanya Parish
    Microbiology .2019; 165(5): 492.     CrossRef
  • The Toxin-Antitoxin MazEF Drives Staphylococcus aureus Biofilm Formation, Antibiotic Tolerance, and Chronic Infection
    Dongzhu Ma, Jonathan B. Mandell, Niles P. Donegan, Ambrose L. Cheung, Wanyan Ma, Scott Rothenberger, Robert M. Q. Shanks, Anthony R. Richardson, Kenneth L. Urish, Jon P. Boyle
    mBio.2019;[Epub]     CrossRef
  • Toxin–antitoxin systems shows variability among Mycobacterium tuberculosis lineages
    J S Solano-Gutierrez, C Pino, J Robledo
    FEMS Microbiology Letters.2019;[Epub]     CrossRef
  • Epidemiological, clinical and mechanistic perspectives of tuberculosis in older people
    Wing W. Yew, Takashi Yoshiyama, Chi C. Leung, Denise P. Chan
    Respirology.2018; 23(6): 567.     CrossRef
  • RE: “DIETARY INTAKE OF ANTIOXIDANT VITAMINS AND CAROTENOIDS AND RISK OF DEVELOPING ACTIVE TUBERCULOSIS IN A PROSPECTIVE POPULATION-BASED COHORT”
    Wing Wai Yew, Denise P Chan, Chi Chiu Leung, Ying Zhang
    American Journal of Epidemiology.2018; 187(7): 1570.     CrossRef
  • System-Wide Analysis Unravels the Differential Regulation and In Vivo Essentiality of Virulence-Associated Proteins B and C Toxin-Antitoxin Systems of Mycobacterium tuberculosis
    Sakshi Agarwal, Prabhakar Tiwari, Amar Deep, Saqib Kidwai, Shamba Gupta, Krishan Gopal Thakur, Ramandeep Singh
    The Journal of Infectious Diseases.2018; 217(11): 1809.     CrossRef
  • Does oxidative stress contribute to adverse outcomes in HIV-associated TB?
    Wing-Wai Yew, Denise P Chan, Amit Singhal, Ying Zhang, Shui-Shan Lee
    Journal of Antimicrobial Chemotherapy.2018; 73(5): 1117.     CrossRef
  • Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress
    Amita Gupta, Balaji Venkataraman, Madavan Vasudevan, Kiran Gopinath Bankar
    Scientific Reports.2017;[Epub]     CrossRef
  • The endobacterium of an arbuscular mycorrhizal fungus modulates the expression of its toxin–antitoxin systems during the life cycle of its host
    Alessandra Salvioli di Fossalunga, Justine Lipuma, Francesco Venice, Laurence Dupont, Paola Bonfante
    The ISME Journal.2017; 11(10): 2394.     CrossRef
  • Oxidative stress and TB outcomes in patients with diabetes mellitus?
    Wing Wai Yew, Chi Chiu Leung, Ying Zhang
    Journal of Antimicrobial Chemotherapy.2017; 72(6): 1552.     CrossRef
  • Early diagnosis and effective treatment regimens are the keys to tackle antimicrobial resistance in tuberculosis (TB): A report from Euroscicon's international TB Summit 2016
    Arundhati Maitra, Tengku Karmila Kamil, Monisha Shaik, Cynthia Amaning Danquah, Alina Chrzastek, Sanjib Bhakta
    Virulence.2017; 8(6): 1005.     CrossRef
  • Identification of four type II toxin-antitoxin systems in Actinobacillus pleuropneumoniae
    Chengkun Zheng, Xigong Zhao, Ting Zeng, Manman Cao, Jiali Xu, Guolin Shi, Jinquan Li, Huanchun Chen, Weicheng Bei
    FEMS Microbiology Letters.2017;[Epub]     CrossRef
  • Emerging drugs and drug targets against tuberculosis
    Nzungize Lambert, Abualgasim Elgaili Abdalla, Xiangke Duan, Jianping Xie
    Journal of Drug Targeting.2017; 25(4): 296.     CrossRef
  • Wake me when it’s over – Bacterial toxin–antitoxin proteins and induced dormancy
    Nathan P Coussens, Dayle A Daines
    Experimental Biology and Medicine.2016; 241(12): 1332.     CrossRef
  • Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis
    Barbara Kędzierska, Finbarr Hayes
    Molecules.2016; 21(6): 790.     CrossRef
  • Phenotypic Heterogeneity in Mycobacterium tuberculosis
    Neeraj Dhar, John McKinney, Giulia Manina, William R. Jacobs Jr., Helen McShane, Valerie Mizrahi, Ian M. Orme
    Microbiology Spectrum.2016;[Epub]     CrossRef
  • tRNAs taking charge
    Jonathan W. Cruz, Nancy A. Woychik, Peter Sebo
    Pathogens and Disease.2016; 74(2): ftv117.     CrossRef
Review
MINIREVIEW] Regulation of Escherichia coli RNase III activity
Boram Lim , Minji Sim , Howoon Lee , Seogang Hyun , Younghoon Lee , Yoonsoo Hahn , Eunkyoung Shin , Kangseok Lee
J. Microbiol. 2015;53(8):487-494.   Published online July 31, 2015
DOI: https://doi.org/10.1007/s12275-015-5323-x
  • 81 View
  • 0 Download
  • 12 Crossref
AbstractAbstract
Bacterial cells respond to changes in the environment by adjusting their physiological reactions. In cascades of cellular responses to stresses of various origins, rapid modulation of RNA function is known to be an effective biochemical adaptation. Among many factors affecting RNA function, RNase III, a member of the phylogenetically highly conserved endoribonuclease III family, plays a key role in posttranscriptional regulatory pathways in Escherichia coli. In this review, we provide an overview of the factors affecting RNase III activity in E. coli.

Citations

Citations to this article as recorded by  
  • Comparative Transcriptomic Analysis of Flagellar-Associated Genes in Salmonella Typhimurium and Its rnc Mutant
    Seungmok Han, Ji-Won Byun, Minho Lee
    Journal of Microbiology.2024; 62(1): 33.     CrossRef
  • arfAantisense RNA regulates MscL excretory activity
    Rosa Morra, Fenryco Pratama, Thomas Butterfield, Geizecler Tomazetto, Kate Young, Ruth Lopez, Neil Dixon
    Life Science Alliance.2023; 6(6): e202301954.     CrossRef
  • Transcriptome and metabolome analyses of response of Synechocystis sp. PCC 6803 to methyl viologen
    Xinyu Hu, Tianyuan Zhang, Kai Ji, Ke Luo, Li Wang, Wenli Chen
    Applied Microbiology and Biotechnology.2021; 105(21-22): 8377.     CrossRef
  • Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression
    Minho Lee, Minkyung Ryu, Minju Joo, Young-Jin Seo, Jaejin Lee, Hong-Man Kim, Eunkyoung Shin, Ji-Hyun Yeom, Yong-Hak Kim, Jeehyeon Bae, Kangseok Lee, William Navarre
    PLOS Pathogens.2021; 17(2): e1009263.     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • RNase III, Ribosome Biogenesis and Beyond
    Maxence Lejars, Asaki Kobayashi, Eliane Hajnsdorf
    Microorganisms.2021; 9(12): 2608.     CrossRef
  • The rnc Gene Regulates the Microstructure of Exopolysaccharide in the Biofilm of Streptococcus mutans through the β-Monosaccharides
    Yangyu Lu, Hongyu Zhang, Meng Li, Mengying Mao, Jiaqi Song, Yalan Deng, Lei Lei, Yingming Yang, Tao Hu
    Caries Research.2021; 55(5): 534.     CrossRef
  • Distributive enzyme binding controlled by local RNA context results in 3′ to 5′ directional processing of dicistronic tRNA precursors byEscherichia coliribonuclease P
    Jing Zhao, Michael E Harris
    Nucleic Acids Research.2019; 47(3): 1451.     CrossRef
  • RNase G controls tpiA mRNA abundance in response to oxygen availability in Escherichia coli
    Jaejin Lee, Dong-Ho Lee, Che Ok Jeon, Kangseok Lee
    Journal of Microbiology.2019; 57(10): 910.     CrossRef
  • The coordinated action of RNase III and RNase G controls enolase expression in response to oxygen availability in Escherichia coli
    Minho Lee, Minju Joo, Minji Sim, Se-Hoon Sim, Hyun-Lee Kim, Jaejin Lee, Minkyung Ryu, Ji-Hyun Yeom, Yoonsoo Hahn, Nam-Chul Ha, Jang-Cheon Cho, Kangseok Lee
    Scientific Reports.2019;[Epub]     CrossRef
  • Identification of endoribonuclease specific cleavage positions reveals novel targets of RNase III inStreptococcus pyogenes
    Anaïs Le Rhun, Anne-Laure Lécrivain, Johan Reimegård, Estelle Proux-Wéra, Laura Broglia, Cristina Della Beffa, Emmanuelle Charpentier
    Nucleic Acids Research.2017; : gkw1316.     CrossRef
  • Regulation and functions of bacterial PNPase
    Federica Briani, Thomas Carzaniga, Gianni Dehò
    WIREs RNA.2016; 7(2): 241.     CrossRef
Research Support, Non-U.S. Gov't
Isolation and Characterization of a Reducing Polyketide Synthase Gene from the Lichen-Forming Fungus Usnea longissima
Yi Wang , Jung A Kim , Yong Hwa Cheong , Yogesh Joshi , Young Jin Koh , Jae-Seoun Hur
J. Microbiol. 2011;49(3):473-480.   Published online June 30, 2011
DOI: https://doi.org/10.1007/s12275-011-0362-4
  • 28 View
  • 0 Download
  • 15 Scopus
AbstractAbstract
The reducing polyketide synthases found in filamentous fungi are involved in the biosynthesis of many drugs and toxins. Lichens produce bioactive polyketides, but the roles of reducing polyketide synthases in lichens remain to be clearly elucidated. In this study, a reducing polyketide synthase gene (UlPKS3) was isolated and characterized from a cultured mycobiont of Usnea longissima. Complete sequence information regarding UlPKS3 (6,519 bp) was obtained by screening a fosmid genomic library. A UlPKS3 sequence analysis suggested that it contains features of a reducing fungal type I polyketide synthase with β-ketoacyl synthase (KS), acyltransferase (AT), dehydratase (DH), enoyl reductase (ER), ketoacyl reducatse (KR), and acyl carrier protein (ACP) domains. This domain structure was similar to the structure of ccRads1, which is known to be involved in resorcylic acid lactone biosynthesis in Chaetomium chiversii. The results of phylogenetic analysis located UlPKS3 in the clade of reducing polyketide synthases. RT-PCR analysis results demonstrated that UlPKS3 had six intervening introns and that UlPKS3 expression was upregulated by glucose, sorbitol, inositol, and mannitol.
Journal Article
Isolation of Synthetic Lethal Mutations in the rsm1-null Mutant of Fission Yeast
DongGeRaMi Moon , Yun-Sun Park , Cha-Yeon Kim , Jin Ho Yoon
J. Microbiol. 2010;48(5):701-705.   Published online November 3, 2010
DOI: https://doi.org/10.1007/s12275-010-0353-x
  • 27 View
  • 0 Download
  • 3 Scopus
AbstractAbstract
To identify mutations in genes that are genetically linked to rsm1, we performed a synthetic lethal genetic screen in the fission yeast, Schizosaccharomyces pombe. Four mutations that showed synthetic lethality in combination with the rsm1null allele were isolated from approximately 320,000 colonies and defined in three complementation groups. One mutant (SLrsm1) exhibited a significant accumulation of poly(A)+ RNA in the nucleus under synthetic lethal conditions, while the rest had no mRNA export defects. In addition, some genes (spmex67, rae1, or mlo3) required for mRNA export complemented the growth defects of the identified mutants. These results suggest that the isolated mutants contain mutations in genes that are involved in mRNA export and/or pre-mRNA retention.
Research Support, Non-U.S. Gov'ts
Nup211, the Fission Yeast Homolog of Mlp1/Tpr, Is Involved in mRNA Export
Jin-Ah Bae , DongGeRaMi Moon , Jin Ho Yoon
J. Microbiol. 2009;47(3):337-343.   Published online June 26, 2009
DOI: https://doi.org/10.1007/s12275-009-0125-7
  • 44 View
  • 0 Download
  • 8 Crossref
AbstractAbstract
Synthetic lethal mutants have been previously isolated in fission yeast Schizosaccharomyces pombe, which genetically interact with spmex67, in order to identify the genes involved in mRNA export. The nup211 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex2, under synthetic lethal condition. We showed that Nup211, fission yeast homolog of Mlp1/Mlp2/Tpr, is essential for vegetative growth and Nup211-GFP proteins expressed at endogenous level are localized mainly in nuclear periphery. The accumulation of poly(A)+ RNA in the nucleus is exhibited when expression of nup211 is repressed or over-expressed. These results suggest that the Nup211 protein plays a pivotal role of mRNA export in fission yeast.

Citations

Citations to this article as recorded by  
  • Fission yeast essential nuclear pore protein Nup211 regulates the expression of genes involved in cytokinesis
    Domenick Kamel, Ayisha Sookdeo, Ayana Ikenouchi, Hualin Zhong, Juan Mata
    PLOS ONE.2024; 19(12): e0312095.     CrossRef
  • Quantitative analysis of nuclear pore complex organization in Schizosaccharomyces pombe
    Joseph M Varberg, Jay R Unruh, Andrew J Bestul, Azqa A Khan, Sue L Jaspersen
    Life Science Alliance.2022; 5(7): e202201423.     CrossRef
  • Asymmetrical localization of Nup107-160 subcomplex components within the nuclear pore complex in fission yeast
    Haruhiko Asakawa, Tomoko Kojidani, Hui-Ju Yang, Chizuru Ohtsuki, Hiroko Osakada, Atsushi Matsuda, Masaaki Iwamoto, Yuji Chikashige, Koji Nagao, Chikashi Obuse, Yasushi Hiraoka, Tokuko Haraguchi, Gregory P. Copenhaver
    PLOS Genetics.2019; 15(6): e1008061.     CrossRef
  • The fission yeast nucleoporin Alm1 is required for proteasomal degradation of kinetochore components
    Silvia Salas-Pino, Paola Gallardo, Ramón R. Barrales, Sigurd Braun, Rafael R. Daga
    Journal of Cell Biology.2017; 216(11): 3591.     CrossRef
  • Tts1, the fission yeast homologue of the TMEM33 family, functions in NE remodeling during mitosis
    Dan Zhang, Snezhana Oliferenko, Daniel J. Lew
    Molecular Biology of the Cell.2014; 25(19): 2970.     CrossRef
  • Characterization of nuclear pore complex components in fission yeastSchizosaccharomyces pombe
    Haruhiko Asakawa, Hui-Ju Yang, Takaharu G Yamamoto, Chizuru Ohtsuki, Yuji Chikashige, Kumiko Sakata-Sogawa, Makio Tokunaga, Masaaki Iwamoto, Yasushi Hiraoka, Tokuko Haraguchi
    Nucleus.2014; 5(2): 149.     CrossRef
  • Isolation of synthetic lethal mutations in combination with spnab2 of fission yeast
    Yun-Sun Park, Jin Ho Yoon
    Genes & Genomics.2012; 34(3): 275.     CrossRef
  • Double duty for nuclear proteins – the price of more open forms of mitosis
    Colin P. De Souza, Stephen A. Osmani
    Trends in Genetics.2009; 25(12): 545.     CrossRef
The Fission Yeast Homologue of Gle1 is Essential for Growth and Involved in mRNA Export
DongGeRaMi Moon , Jin-Ah Bae , Hyun Jin Cho , Jin Ho Yoon
J. Microbiol. 2008;46(4):422-428.   Published online August 31, 2008
DOI: https://doi.org/10.1007/s12275-008-0177-0
  • 43 View
  • 0 Download
  • 3 Crossref
AbstractAbstract
We have isolated Gle1 homologue (named as spgle1) as a partial multicopy suppressor of the synthetic lethality of rae1-167 elf1-21 in fission yeast Schizosaccharomyces pombe. The spgle1 is also able to complement partially temperature-sensitive phenotype of rae1-167 only at a lower restrictive temperature. The spgle1 gene contains one intron and encodes a 480 amino-acid protein with predicted molecular weight of 56.2 kDa. We showed that spgle1 gene is essential for vegetative growth and functional Gle1-GFP protein is localized mainly in NPC. The accumulation of poly(A)+ RNA in the nucleus is exhibited when expression of spgle1 is repressed or over-expressed. These results suggest that the spGle1 protein is also involved in mRNA export in fission yeast.

Citations

Citations to this article as recorded by  
  • Isolation of synthetic lethal mutations in combination with spnab2 of fission yeast
    Yun-Sun Park, Jin Ho Yoon
    Genes & Genomics.2012; 34(3): 275.     CrossRef
  • Control of mRNA Export and Translation Termination by Inositol Hexakisphosphate Requires Specific Interaction with Gle1
    Abel R. Alcázar-Román, Timothy A. Bolger, Susan R. Wente
    Journal of Biological Chemistry.2010; 285(22): 16683.     CrossRef
  • Generation of expression vectors for high-throughput functional analysis of target genes in Schizosaccharomyces pombe
    Jiwon Ahn, Chung-Hae Choi, Chang-Mo Kang, Chun-Ho Kim, Hee-Moon Park, Kyung-Bin Song, Kwang-Lae Hoe, Misun Won, Kyung-Sook Chung
    The Journal of Microbiology.2009; 47(6): 789.     CrossRef
Schizosaccharomyces pombe nup97, which Genetically Interacts with mex67, is Essential for Growth and Involved in mRNA Export
Hyun Jin Cho , Duk Kyung Hwang , Sun Im Jung , Jin Ho Yoon
J. Microbiol. 2007;45(4):344-349.
DOI: https://doi.org/2562 [pii]
  • 41 View
  • 0 Download
AbstractAbstract
We have isolated previously three synthetic lethal mutants in Schizosaccharomyces pombe, which genetically interact with mex67, in order to identify the genes involved in mRNA export. A novel nup97 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex3. The nup97 gene contains one intron and encodes an 851 amino-acid protein that is similar to nucleoporins, Npp106p in S. pombe and Nic96p in Saccharomyces cerevisiae. The nup97 gene is essential for vegetative growth, and nup97 null mutant harboring pREP41X-Nup97 showed poly(A)+ RNA export defect when expression of nup97 is repressed in the presence of thiamine. These results suggest that nup97 is involved in mRNA export from the nucleus to cytoplasm.
The Influence of the Nucleotide Sequences of Random Shine-Dalgarno and Spacer Region on Bovine Growth Hormone Gene Expression
Soon-Young Paik , Kyung Soo Ra , Hoon Sik Cho , Kwang Bon Koo , Hyung Suk Baik , Myung Chul Lee , Jong Won Yun , Jang Won Choi
J. Microbiol. 2006;44(1):64-71.
DOI: https://doi.org/2335 [pii]
  • 38 View
  • 0 Download
AbstractAbstract
To investigate the effects of the nucleotide sequences in Shine-Dalgarno (SD) and the spacer region (SD-ATG) on bovine growth hormone (bGH) gene expression, the expression vectors under the control of the T7 promoter (pT7-7 vector) were constructed using bGH derivatives (bGH1 & bGH14) which have different 5''-coding regions and were induced in E. coli BL21(DE3). Oligonucleotides containing random SD sequences and a spacer region were chemically synthesized and the distance between the SD region and the initiation codon were fixed to nine bases in length. The oligonucleotides were annealed and fused to the bGH1 and bGH14 cDNA, respectively. When the bGH gene was induced with IPTG in E. coli BL21(DE3), some clones containing only bGH14 cDNA produced considerable levels of bGH in the range of 6.9% to 8.5% of total cell proteins by SDS-PAGE and Western blot. Otherwise, the bGH was not detected in any clones with bGH1 cDNA. Accordingly, the nucleotide sequences of SD and the spacer region affect on bGH expression indicates that the sequences sufficiently destabilize the mRNA secondary structure of the bGH14 gene. When the free energy was calculated from the transcription initiation site to the +51 nucleotide of bGH cDNA using a program of nucleic acid folding and hybridization prediction, the constructs with values below ‒26.3 kcal/mole (toward minus direction) were not expressed. The constructs with the original sequence of bGH cDNA also did not show any expression, regardless of the free energy values. Thus, the disruption of the mRNA secondary structure may be a major factor regulating bGH expression in the translation initiation process. Accordingly, the first stem-loop among two secondary structures present in the 5''-end region of the bGH gene should be disrupted for the effective expression of bGH.
Journal Article
Schizosaccharomyces pombe rsm1 Genetically Interacts with spmex67, Which Is Involved in mRNA Export
Jin Ho Yoon
J. Microbiol. 2004;42(1):32-36.
DOI: https://doi.org/2004 [pii]
  • 38 View
  • 0 Download
AbstractAbstract
We have previously isolated three synthetic lethal mutants from Schizosaccharomyces pombe in order to identify mutations in the genes that are functionally linked to spmex67 with respect to mRNA export. A novel rsm1 gene was isolated by complementation of the growth defect in one of the synthetic lethal mutants, SLMex1. The rsm1 gene contains no introns and encodes a 296 amino-acid-long protein with the RING finger domain, a C3HC4 in the N-terminal half. The [delta]rsm1 null mutant is viable, but it showed a slight poly(A)^+ RNA accumulation in the nucleus. Also, the combination of [delta]rsm1 and [delta]spmex67 mutations confers synthetic lethality that is accompanied by the severe poly(A)^+ RNA export defect. These results suggest that rsm1 is involved in mRNA export from the nucleus.
Synthetic Lethal Mutations with spmex67 of Schizosaccharomyces pombe in the Mediation of mRNA Export
Jin Ho Yoon
J. Microbiol. 2003;41(2):115-120.
  • 39 View
  • 0 Download
AbstractAbstract
Mex67p/Tap are evolutionally conserved mRNA export factors. To identify mutations in genes that are functionally linked to mex67 with respect to mRNA export, we used a synthetic lethal genetic screen in Schizosaccharomyces pombe. Three synthetic lethal mutants were isolated and mutations in these mutants defined separate complementation groups. These mutants exhibited the accumulation of poly(A)^+ RNA in the nucleus, with a decrease in the cytoplasm under synthetically lethal conditions, suggesting that the mutations cause an mRNA nuclear export defect. In addition, the S. pombe genes that were found to be involved in mRNA export did not suppress the synthetic lethality of these mutants. These results indicate that the isolated mutants contain mutations in new genes, which are involved in mRNA export from the nucleus.

Journal of Microbiology : Journal of Microbiology
TOP