Search
- Page Path
-
HOME
> Search
Journal Articles
- Ultrasonic Treatment Enhanced Astaxanthin Production of Haematococcus pluvialis
-
Yun Hwan Park , Jaewon Park , Jeong Sik Choi , Hyun Soo Kim , Jong Soon Choi , Yoon-E Choi
-
J. Microbiol. 2023;61(6):633-639. Published online June 13, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00053-5
-
-
17
View
-
0
Download
-
1
Citations
-
Abstract
- In this study, effects of ultrasonic treatment on Haematococcus pluvialis (H. pluvialis) were investigated. It has been confirmed
that the ultrasonic stimulation acted as stress resources in the red cyst stage H. pluvialis cells containing astaxanthin,
result
ing in additional astaxanthin production. With the increase in production of astaxanthin, the average diameter of H.
pluvialis cells increased accordingly. In addition, to determine how ultrasonic stimulation had an effect on the further biosynthesis
of astaxanthin, genes related to astaxanthin synthesis and cellular ROS level were measured. As a result, it was
confirmed that astaxanthin biosynthesis related genes and cellular ROS levels were increased, and thus ultrasonic stimulation
acts as an oxidative stimulus. These results support the notion on the effect of the ultrasonic treatment, and we believe
our novel approach based on the ultrasonic treatment would help to enhance the astaxanthin production from H. pluvialis.
- Metformin Regulates Gut Microbiota Abundance to Suppress M2 Skewing of Macrophages and Colorectal Tumorigenesis in Mice
-
Linfeng Fan , Xiangfu Zeng , Guofeng Xu
-
J. Microbiol. 2023;61(1):109-120. Published online January 26, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00010-8
-
-
17
View
-
0
Download
-
2
Citations
-
Abstract
- The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear.
This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were
collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance
of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane
(AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted
tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further
treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was
collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice
as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but
suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests
that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.
- Effect of biostimulation and bioaugmentation on hydrocarbon degradation and detoxification of diesel-contaminated soil: a microcosm study
-
Patricia Giovanella , Lídia de Azevedo Duarte , Daniela Mayumi Kita , Valéria Maia de Oliveira , Lara Durães Sette
-
J. Microbiol. 2021;59(7):634-643. Published online May 15, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0395-2
-
-
16
View
-
0
Download
-
7
Citations
-
Abstract
- Soil contamination with diesel oil is quite common during
processes of transport and storage. Bioremediation is considered
a safe, economical, and environmentally friendly approach
for contaminated soil treatment. In this context, studies
using hydrocarbon bioremediation have focused on total
petroleum hydrocarbon (TPH) analysis to assess process effectiveness,
while ecotoxicity has been neglected. Thus, this
study aimed to select a microbial consortium capable of detoxifying
diesel oil and apply this consortium to the bioremediation
of soil contaminated with this environmental pollutant
through different bioremediation approaches. Gas chromatography
(GC-FID) was used to analyze diesel oil degradation,
while ecotoxicological bioassays with the bioindicators
Artemia sp., Aliivibrio fischeri (Microtox), and Cucumis
sativus were used to assess detoxification. After 90 days of
bioremediation, we found that the biostimulation and biostimulation/
bioaugmentation approaches showed higher rates
of diesel oil degradation in relation to natural attenuation
(41.9 and 26.7%, respectively). Phytotoxicity increased in the
biostimulation and biostimulation/bioaugmentation treatments
during the degradation process, whereas in the Microtox
test, the toxicity was the same in these treatments as that
in the natural attenuation treatment. In both the phytotoxicity
and Microtox tests, bioaugmentation treatment showed lower
toxicity. However, compared with natural attenuation, this
approach did not show satisfactory hydrocarbon degradation.
Based on the microcosm experiments results, we conclude
that a broader analysis of the success of bioremediation requires
the performance of toxicity bioassays.
TOP