Search
- Page Path
-
HOME
> Search
Journal Articles
- Fresh Washed Microbiota Transplantation Alters Gut Microbiota Metabolites to Ameliorate Sleeping Disorder Symptom of Autistic Children
-
Nai-Hua Liu , Hong-Qian Liu , Jia-Yi Zheng , Meng-Lu Zhu , Li-Hao Wu , Hua-Feng Pan , Xing-Xiang He
-
J. Microbiol. 2023;61(8):741-753. Published online September 4, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00069-x
-
-
18
View
-
0
Download
-
2
Citations
-
Abstract
- Accumulating studies have raised concerns about gut dysbiosis associating autism spectrum disorder (ASD) and its related
symptoms. However, the effect of gut microbiota modification on the Chinese ASD population and its underlying mechanism
were still elusive. Herein, we enrolled 24 ASD children to perform the first course of fresh washed microbiota transplantation
(WMT), 18 patients decided to participate the second course, 13 of which stayed to participate the third course, and there were
8 patients at the fourth course. Then we evaluated the effects of fresh WMT on these patients and their related symptoms.
Our results found that the sleeping disorder symptom was positively interrelated to ASD, fresh WMT significantly alleviated
ASD and its sleeping disorder and constipation symptoms. In addition, WMT stably and continuously downregulated Bacteroides/
Flavonifractor/Parasutterella while upregulated Prevotella_9 to decrease toxic metabolic production and improve
detoxification by regulating glycolysis/myo-inositol/D-glucuronide/D-glucarate degradation, L-1,2-propanediol degradation,
fatty acid β-oxidation. Thus, our results suggested that fresh WMT moderated gut microbiome to improve the behavioral
and sleeping disorder symptoms of ASD via decrease toxic metabolic production and improve detoxification. Which thus
provides a promising gut ecological strategy for ASD children and its related symptoms treatments.
- Heterologous Production and Structure Determination of a New Lanthipeptide Sinosporapeptin Using a Cryptic Gene Cluster in an Actinobacterium Sinosporangium siamense
-
Keita Saito , Keiichiro Mukai , Issara Kaweewan , Hiroyuki Nakagawa , Takeshi Hosaka , Shinya Kodani
-
J. Microbiol. 2023;61(6):641-648. Published online June 12, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00059-z
-
-
16
View
-
0
Download
-
3
Citations
-
Abstract
- Lipolanthine is a subclass of lanthipeptide that has the modification of lipid moiety at the N-terminus. A cryptic biosynthetic
gene cluster comprising four genes (sinA, sinKC, sinD, and sinE) involved in the biosynthesis of lipolanthine was identified in
the genome of an actinobacterium Sinosporangium siamense. Heterologous coexpression of a precursor peptide coding gene
sinA and lanthipeptide synthetase coding gene sinKC in the host Escherichia coli strain BL21(DE3) resulted in the synthesis
of a new lanthipeptide, sinosporapeptin. It contained unusual amino acids, including one labionin and two dehydrobutyrine
residues, as determined using NMR and MS analyses. Another coexpression experiment with two additional genes of decarboxylase
(sinD) and N-acetyl transferase (sinE) resulted in the production of a lipolanthine-like modified sinosporapeptin.
Review
- Bacterial Sialic Acid Catabolism at the Host–Microbe Interface
-
Jaeeun Kim , Byoung Sik Kim
-
J. Microbiol. 2023;61(4):369-377. Published online March 27, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00035-7
-
-
16
View
-
1
Download
-
3
Citations
-
Abstract
- Sialic acids consist of nine-carbon keto sugars that are commonly found at the terminal end of mucins. This positional
feature of sialic acids contributes to host cell interactions but is also exploited by some pathogenic bacteria in evasion of
host immune system. Moreover, many commensals and pathogens use sialic acids as an alternative energy source to survive
within the mucus-covered host environments, such as the intestine, vagina, and oral cavity. Among the various biological
events mediated by sialic acids, this review will focus on the processes necessary for the catabolic utilization of sialic acid in
bacteria. First of all, transportation of sialic acid should be preceded before its catabolism. There are four types of transporters
that are used for sialic acid uptake; the major facilitator superfamily (MFS), the tripartite ATP-independent periplasmic
C4-dicarboxilate (TRAP) multicomponent transport system, the ATP binding cassette (ABC) transporter, and the sodium
solute symporter (SSS). After being moved by these transporters, sialic acid is degraded into an intermediate of glycolysis
through the well-conserved catabolic pathway. The genes encoding the catabolic enzymes and transporters are clustered into
an operon(s), and their expression is tightly controlled by specific transcriptional regulators. In addition to these mechanisms,
we will cover some researches about sialic acid utilization by oral pathogens.
Journal Article
- Descr!ption of Ornithinimicrobium cryptoxanthini sp. nov., a Novel Actinomycete Producing β‑cryptoxanthin Isolated from the Tongtian River Sediments
-
Yuyuan Huang , Yifan Jiao , Sihui Zhang , Yuanmeihui Tao , Suping Zhang , Dong Jin , Ji Pu , Liyun Liu , Jing Yang , Shan Lu
-
J. Microbiol. 2023;61(4):379-388. Published online March 16, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00029-5
-
-
19
View
-
0
Download
-
1
Citations
-
Abstract
- Two novel Gram-stain-positive, aerobic, non-motile, and yellow-pigmented, irregular rod-shaped bacteria (JY.X269 and
JY.X270T) were isolated from the near-surface sediments of river in Qinghai Province, P. R. China (32°37′13″N, 96°05′37″E)
in July 2019. Both strains were shown to grow at 15–35 °C and pH 7.0–10.0, and in the presence of 0–6.0% (w/v) NaCl.
The 16S rRNA gene sequence analysis showed that the isolates were closely related to Ornithinimicrobium cavernae CFH
30183
T (98.6–98.8% 16S rRNA gene sequence similarity), O. ciconiae H23M54T
(98.5–98.6%) and O. murale 01-Gi-040T
(98.3–98.5%). The phylogenetic and phylogenomic trees based on the 16S rRNA gene and 537 core gene sequences, respectively,
revealed that the two strains formed a distinct cluster with the above three species. The digital DNA-DNA hybridization
(dDDH) and average nucleotide identity (ANI) values between our two isolates (JY.X269 and JY.X270T) and other
Ornithinimicrobium species were within the ranges of 19.0–23.9% and 70.8–80.4%, respectively, all below the respective
recommended 70.0% and 95–96% cutoff point. Furthermore, the major cellular fatty acids (> 10.0%) of strains JY.X269 and
JY.X270T were iso-C15:0, iso-C16:0, and summed feature 9. Strain JY.X270T contained MK-8(H4) and ornithine as the predominant
menaquinone and diagnostic diamino acid component within the cell wall teichoic acids. β-cryptoxanthin (
C40H56O) can
be extracted from strain JY.X270T, and its content is 6.3 μg/ml. Based on results from the phylogenetic, chemotaxonomic,
and phenotypic analyses, the two strains could be classified as a novel species of the genus Ornithinimicrobium, for which
the name Ornithinimicrobium cryptoxanthini sp. nov. is proposed (type strain JY.X270T = CGMCC 1.19147T = JCM 34882T).
Review
- Insights into the immune responses of SARS-CoV-2 in relation to COVID-19 vaccines
-
Heedo Park , Mee Sook Park , Jong Hyeon Seok , Jaehwan You , Jineui Kim , Jeonghun Kim , Man-Seong Park
-
J. Microbiol. 2022;60(3):308-320. Published online March 2, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1598-x
-
-
22
View
-
0
Download
-
6
Citations
-
Abstract
- The three types of approved coronavirus disease 2019 (COVID-
19) vaccines that have been emergency-use listed (EUL) by
the World Health Organization are mRNA vaccines, adenovirus-
vectored vaccines, and inactivated vaccines. Canonical
vaccine developments usually take years or decades to be completed
to commercialization; however, the EUL vaccines being
used in the current situation comprise several COVID-
19 vaccine candidates applied in studies and clinical settings
across the world. The extraordinary circumstances of the
COVID-19 pandemic have necessitated the emergency authorization
of these EUL vaccines, which have been rapidly
developed. Although the benefits of the EUL vaccines outweigh
their adverse effects, there have been reports of rare but
fatal cases directly associated with COVID-19 vaccinations.
Thus, a reassessment of the immunological rationale underlying
EUL vaccines in relation to COVID-19 caused by SARSCOV-
2 virus infection is now required. In this review, we discuss
the manifestations of COVID-19, immunologically projected
effects of EUL vaccines, reported immune responses,
informed issues related to COVID-19 vaccination, and the
potential strategies for future vaccine use against antigenic
variants.
Journal Article
- Diversity and composition of microbiota during fermentation of traditional Nuodeng ham
-
Xiao-mei Zhang , Xi-jun Dang , Yuan-bing Wang , Tao Sun , Yao Wang , Hong Yu , Wu-song Yang
-
J. Microbiol. 2021;59(1):20-28. Published online December 23, 2020
-
DOI: https://doi.org/10.1007/s12275-021-0219-4
-
-
12
View
-
0
Download
-
10
Citations
-
Abstract
- The microbial community is one of the most important factors
in shaping the characteristics of fermented food. Nuodeng
ham, traditionally produced and subjected to 1–4 years
of fermentation, is a dry fermented food product with cultural
and economic significance to locals in southwestern China.
In this study, we aimed to characterize the microbiota and
physicochemical profiles of Nuodeng ham across different
stages of fermentation. Ham samples from each of the four
years were analyzed by sequencing bacterial 16S rRNA gene
and fungal internal transcribed spacer sequence, in order to
characterize the diversity and composition of their microflora.
A total of 2,679,483 bacterial and 2,983,234 fungal sequences
of high quality were obtained and assigned to 514 and 57
genera, respectively. Among these microbes, Staphylococcus
and Candida were the most abundant genera observed in the
ham samples, though samples from different years showed
differences in their microbial abundance. Results of physicochemical
properties (pH, water, amino acid, NaCl, nitrate
and nitrite contents, and the composition of volatile compounds)
revealed differences among the ham samples in the
composition of volatile compounds, especially in the third
year samples, in which no nitrite was detected. These results
suggest that the structure and diversity of microbial communities
significantly differed across different stages of fermentation.
Moreover, the third year hams exhibits a unique and
balanced microbial community, which might contribute to
the special flavor in the green and safe food products. Thus,
our study lends insights into the production of high quality
Nuodeng ham.
Review
- [MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
-
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
-
J. Microbiol. 2020;58(12):979-987. Published online November 17, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0483-8
-
-
14
View
-
0
Download
-
12
Citations
-
Abstract
- Protein lysine acetylation influences many physiological functions,
such as gene regulation, metabolism, and disease in
eukaryotes. Although little is known about the role of lysine
acetylation in bacteria, several reports have proposed its importance
in various cellular processes. Here, we discussed the
function of the protein lysine acetylation and the post-translational
modifications (PTMs) of histone-like proteins in bacteria
focusing on Salmonella pathogenicity. The protein lysine
residue in Salmonella is acetylated by the Pat-mediated enzymatic
pathway or by the acetyl phosphate-mediated non-enzymatic
pathway. In Salmonella, the acetylation of lysine 102
and lysine 201 on PhoP inhibits its protein activity and DNAbinding,
respectively. Lysine acetylation of the transcriptional
regulator, HilD, also inhibits pathogenic gene expression.
Moreover, it has been reported that the protein acetylation
patterns significantly differ in the drug-resistant and
-sensitive Salmonella strains. In addition, nucleoid-associated
proteins such as histone-like nucleoid structuring protein
(H-NS) are critical for the gene silencing in bacteria, and
PTMs in H-NS also affect the gene expression. In this review,
we suggest that protein lysine acetylation and the post-translational
modifications of H-NS are important factors in understanding
the regulation of gene expression responsible
for pathogenicity in Salmonella.
TOP