Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
2 "proteomics"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
Development of a Novel D‑Lactic Acid Production Platform Based on Lactobacillus saerimneri TBRC 5746
Kitisak Sansatchanon , Pipat Sudying , Peerada Promdonkoy , Yutthana Kingcha , Wonnop Visessanguan , Sutipa Tanapongpipat , Weerawat Runguphan , Kanokarn Kocharin
J. Microbiol. 2023;61(9):853-863.   Published online September 14, 2023
DOI: https://doi.org/10.1007/s12275-023-00077-x
  • 14 View
  • 0 Download
  • 2 Citations
AbstractAbstract
D-Lactic acid is a chiral, three-carbon organic acid, that bolsters the thermostability of polylactic acid. In this study, we developed a microbial production platform for the high-titer production of D-lactic acid. We screened 600 isolates of lactic acid bacteria (LAB) and identified twelve strains that exclusively produced D-lactic acid in high titers. Of these strains, Lactobacillus saerimneri TBRC 5746 was selected for further development because of its homofermentative metabolism. We investigated the effects of high temperature and the use of cheap, renewable carbon sources on lactic acid production and observed a titer of 99.4 g/L and a yield of 0.90 g/g glucose (90% of the theoretical yield). However, we also observed L-lactic acid production, which reduced the product’s optical purity. We then used CRISPR/dCas9-assisted transcriptional repression to repress the two Lldh genes in the genome of L. saerimneri TBRC 5746, resulting in a 38% increase in D-lactic acid production and an improvement in optical purity. This is the first demonstration of CRISPR/dCas9-assisted transcriptional repression in this microbial host and represents progress toward efficient microbial production of D-lactic acid.
Metformin Regulates Gut Microbiota Abundance to Suppress M2 Skewing of Macrophages and Colorectal Tumorigenesis in Mice
Linfeng Fan , Xiangfu Zeng , Guofeng Xu
J. Microbiol. 2023;61(1):109-120.   Published online January 26, 2023
DOI: https://doi.org/10.1007/s12275-022-00010-8
  • 17 View
  • 0 Download
  • 2 Citations
AbstractAbstract
The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear. This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane (AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.

Journal of Microbiology : Journal of Microbiology
TOP