Search
- Page Path
-
HOME
> Search
Journal Articles
- Eradication of drug-resistant Acinetobacter baumannii by cell-penetrating peptide fused endolysin
-
Jeonghyun Lim , Jaeyeon Jang , Heejoon Myung , Miryoung Song
-
J. Microbiol. 2022;60(8):859-866. Published online May 25, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2107-y
-
-
23
View
-
0
Download
-
9
Citations
-
Abstract
- Antimicrobial agents targeting peptidoglycan have shown
successful results in eliminating bacteria with high selective
toxicity. Bacteriophage encoded endolysin as an alternative
antibiotics is a peptidoglycan degrading enzyme with a low
rate of resistance. Here, the engineered endolysin was developed
to defeat multiple drug-resistant (MDR) Acinetobacter
baumannii. First, putative endolysin PA90 was predicted by
genome analysis of isolated Pseudomonas phage PBPA. The
His-tagged PA90 was purified from BL21(DE3) pLysS and
tested for the enzymatic activity using Gram-negative pathogens
known for having a high antibiotic resistance rate including
A. baumannii. Since the measured activity of PA90
was low, probably due to the outer membrane, cell-penetrating
peptide (CPP) DS4.3 was introduced at the N-terminus
of PA90 to aid access to its substrate. This engineered endolysin,
DS-PA90, completely killed A. baumannii at 0.25 μM,
at which concentration PA90 could only eliminate less than
one log in CFU/ml. Additionally, DS-PA90 has tolerance to
NaCl, where the ~50% of activity could be maintained in the
presence of 150 mM NaCl, and stable activity was also observed
with changes in pH or temperature. Even MDR A. baumannii
strains were highly susceptible to DS-PA90 treatment:
five out of nine strains were entirely killed and four strains
were reduced by 3–4 log in CFU/ml. Consequently, DS-PA90
could protect waxworm from A. baumannii-induced death
by ~70% for ATCC 17978 or ~44% for MDR strain 1656-2
infection. Collectively, our data suggest that CPP-fused endolysin
can be an effective antibacterial agent against Gramnegative
pathogens regardless of antibiotics resistance mechanisms.
- Transposon insertion site sequencing (TIS) of Pseudomonas aeruginosa
-
Hongbaek Cho
-
J. Microbiol. 2021;59(12):1067-1074. Published online December 4, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1565-y
-
-
18
View
-
0
Download
-
2
Citations
-
Abstract
- Transposon insertion site sequencing (TIS) is a technique that
determines the insertion profile of a transposon mutant library
by massive parallel sequencing of transposon-genomic
DNA junctions. Because the transposon insertion profile reflects
the abundance of each mutant in the library, it provides
information to assess the fitness contribution of each genetic
locus of a bacterial genome in a specific growth condition or
strain background. Although introduced only about a dozen
years ago, TIS has become an important tool in bacterial genetics
that provides clues to study biological functions and
regulatory mechanisms. Here, I describe a protocol for generating
high density transposon insertion mutant libraries
and preparing Illumina sequencing samples for mapping the
transposon junctions of the transposon mutant libraries using
Pseudomonas aeruginosa as an example.
- Development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) thermal inactivation method with preservation of diagnostic sensitivity
-
Young-Il Kim , Mark Anthony B. Casel , Se-Mi Kim , Seong-Gyu Kim , Su-Jin Park , Eun-Ha Kim , Hye Won Jeong , Haryoung Poo , Young Ki Choi
-
J. Microbiol. 2020;58(10):886-891. Published online September 29, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0335-6
-
-
18
View
-
0
Download
-
21
Citations
-
Abstract
- Various treatments and agents had been reported to inactivate
RNA viruses. Of these, thermal inactivation is generally
considered an effective and cheap method of sample
preparation for downstream assays. The purpose of this study
is to establish a safe inactivation method for SARS-CoV-2
without compromising the amount of amplifiable viral genome
necessary for clinical diagnoses. In this study, we demonstrate
the infectivity and genomic stability of SARSCoV-
2 by thermal inactivation at both 56°C and 65°C. The
results
substantiate that viable SARS-CoV-2 is readily inactivated
when incubated at 56°C for 30 min or at 65°C for
10 min. qRT-PCR of specimens heat-inactivated at 56°C for
30 min or 65°C for 15 min revealed similar genomic RNA
stability compared with non-heat inactivated specimens. Further,
we demonstrate that 30 min of thermal inactivation at
56°C could inactivate viable viruses from clinical COVID-19
specimens without attenuating the qRT-PCR diagnostic sensitivity.
Heat treatment of clinical specimens from COVID-19
patients at 56°C for 30 min or 65°C for 15 min could be a useful
method
for the inactivation of a highly contagious agent,
SARS-CoV-2. Use of this method would reduce the potential
for secondary infections in BSL2 conditions during diagnostic
procedures. Importantly, infectious virus can be inactivated
in clinical specimens without compromising the
sensitivity of the diagnostic RT-PCR assay.
- Georgenia faecalis sp. nov. isolated from the faeces of Tibetan antelope
-
Xiaoxia Wang , Jing Yang , Yuyuan Huang , Xiaomin Wu , Licheng Wang , Limei Han , Sha Li , Huan Li , Xiaoying Fu , Hai Chen , Xiong Zhu
-
J. Microbiol. 2020;58(9):734-740. Published online July 24, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0060-1
-
-
14
View
-
0
Download
-
2
Citations
-
Abstract
- Two aerobic, Gram-stain-positive, non-motile, non-sporulating
coccoid strains, designated ZLJ0423T and ZLJ0321,
were isolated from the faeces of Tibetan antelope (Pantholops
hodgsonii). Their optimal temperature, NaCl concentration
and pH for growth were 28°C, 0.5% (w/v) NaCl and pH 7.5,
respectively. Phylogenetic analysis based on 16S rRNA gene
sequences revealed that strains ZLJ0423T and ZLJ0321 were
very similar to each other (99.8%) and had a sequence similarity
of 97.0% with Georgenia satyanarayanai NBRC 107612T
and Georgenia subflava CGMCC 1.12782T. Phylogenomic
analysis based on 688 core genes indicated that these strains
formed a clade with G. satyanarayanai NBRC 107612T and
Georgenia wutianyii Z294T. The predominant cellular fatty
acids were anteiso-C15:0, anteiso-C15:1 A and C16:0. The major
menaquinone was MK-8(H4). The cell-wall amino acids consisted
of alanine, lysine, glycine and aspartic acid, with lysine
as the diagnostic diamino acid. Diphosphatidylglycerol,
phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol
mannosides and two unidentified lipids formed the
polar lipid profile. The DNA G + C content of both isolates
was 73.9 mol%. The digital DNA–DNA hybridization value
between strains ZLJ0423T and ZLJ0321 was 91.2%, but their
values with closely related species and other available type
strains of the genus Georgenia were lower than the 70% threshold.
On the basis of polyphasic taxonomic data, strains
ZLJ0423T and ZLJ0321 represent a novel species within the
genus Georgenia, for which the name Georgenia faecalis sp.
nov. is proposed. The type strain is ZLJ0423T (= CGMCC
1.13681T = JCM 33470T).
TOP