Previous issues
- Page Path
-
HOME
> Browse Articles
> Previous issues
- Volume 59(4); April 2021
-
Review
- Trans-acting regulators of ribonuclease activity
-
Jaejin Lee , Minho Lee , Kangseok Lee
-
J. Microbiol. 2021;59(4):341-359. Published online March 29, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0650-6
-
-
14
View
-
0
Download
-
4
Citations
-
Abstract
- RNA metabolism needs to be tightly regulated in response to
changes in cellular physiology. Ribonucleases (RNases) play
an essential role in almost all aspects of RNA metabolism, including
processing, degradation, and recycling of RNA molecules.
Thus, living systems have evolved to regulate RNase
activity at multiple levels, including transcription, post-transcription,
post-translation, and cellular localization. In addition,
various trans-acting regulators of RNase activity have
been discovered in recent years. This review focuses on the
physiological roles and underlying mechanisms of trans-acting
regulators of RNase activity.
Journal Articles
- Leucobacter coleopterorum sp. nov., Leucobacter insecticola sp. nov., and Leucobacter viscericola sp. nov., isolated from the intestine of the diving beetles, Cybister brevis and Cybister lewisianus, and emended description of the genus Leucobacter
-
Dong-Wook Hyun , Hojun Sung , Pil Soo Kim , Ji-Hyun Yun , Jin-Woo Bae
-
J. Microbiol. 2021;59(4):360-368. Published online January 26, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0472-6
-
-
13
View
-
0
Download
-
9
Citations
-
Abstract
- Three novel bacterial strains, HDW9AT, HDW9BT, and
HDW9CT, isolated from the intestine of the diving beetles
Cybister lewisianus and Cybister brevis, were characterized as
three novel species using a polyphasic approach. The isolates
were Gram-staining-positive, strictly aerobic, non-motile,
and rod-shaped. They grew optimally at 30°C (pH 7) in the
presence of 0.5% (wt/vol) NaCl. Phylogenetic analysis based
on the 16S rRNA gene sequences revealed that they belong
to the genus Leucobacter and are closely related to L. denitrificans
M1T8B10T (98.4–98.7% sequence similarity). Average
nucleotide identity (ANI) values among the isolates were
76.4–84.1%. ANI values for the isolates and the closest taxonomic
species, L. denitrificans KACC 14055T, were 72.3–73.1%.
The isolates showed ANI values of < 76.5% with all analyzable
Leucobacter strains in the EzBioCloud database. The
genomic DNA G + C content of the isolates was 60.3–62.5%.
The polar lipid components were phosphatidylglycerol, diphosphatidylglycerol,
and other unidentified glycolipids, phospholipids,
and lipids. The major cellular fatty acids were anteiso-
C15:0, iso-C16:0, and anteiso-C17:0. MK-10 was the major
respiratory quinone, and MK-7 and MK-11 were the minor
respiratory quinones. The whole-cell sugar components of the
isolates were ribose, glucose, galactose, and mannose. The
isolates harbored L-2,4-diaminobutyric acid, L-serine, L-lysine,
L-aspartic acid, glycine, and D-glutamic acid within the
cell wall peptidoglycan. Based on phylogenetic, phenotypic,
chemotaxonomic, and genotypic analyses, strains HDW9AT,
HDW9BT, and HDW9CT represent three novel species within
the genus Leucobacter. We propose the name Leucobacter
coleopterorum sp. nov. for strain HDW9AT (= KACC 21331T
= KCTC 49317T = JCM 33667T), the name Leucobacter insecticola
sp. nov. for strain HDW9BT (= KACC 21332T =
KCTC 49318T = JCM 33668T), and the name Leucobacter viscericola
sp. nov. for strain HDW9CT (= KACC 21333T =
KCTC 49319T = JCM 33669T).
- Inferences in microbial structural signatures of acne microbiome and mycobiome
-
Jubin Kim , Taehun Park , Hye-Jin Kim , Susun An , Woo Jun Sul
-
J. Microbiol. 2021;59(4):369-375. Published online February 10, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0647-1
-
-
14
View
-
0
Download
-
16
Citations
-
Abstract
- Acne vulgaris, commonly known as acne, is the most common
skin disorder and a multifactorial disease of the sebaceous
gland. Although the pathophysiology of acne is still
unclear, bacterial and fungal factors are known to be involved
in. This study aimed to investigate whether the microbiomes
and mycobiomes of acne patients are distinct from those of
healthy subjects and to identify the structural signatures of
microbiomes related to acne vulgaris. A total of 33 Korean
female subjects were recruited (Acne group, n = 17; Healthy
group, n = 16), and microbiome samples were collected swabbing
the forehead and right cheek. To characterize the fungal
and bacterial communities, 16S rRNA V4–V5 and ITS1 region,
respectively, were sequenced and analysed using Qiime2.
There were no significant differences in alpha and beta diversities
of microbiomes between the Acne and Healthy groups.
In comparison with the ratio of Cutibacterium to Staphylococcus,
the acne patients had higher abundance of Staphylococcus
compared to Cutibacterium than the healthy individuals.
In network analysis with the dominant microorganism
amplicon sequence variants (ASV) (Cutibacterium, Staphylococcus,
Malassezia globosa, and Malassezia restricta) Cutibacterium
acnes was identified to have hostile interactions
with Staphylococcus and Malassezia globosa. Accordingly, this
results
suggest an insight into the differences in the skin microbiome
and mycobiome between acne patients and healthy
controls and provide possible microorganism candidates that
modulate the microbiomes associated to acne vulgaris.
- Different distribution patterns of microorganisms between aquaculture pond sediment and water
-
Lili Dai , Chengqing Liu , Liang Peng , Chaofeng Song , Xiaoli Li , Ling Tao
-
J. Microbiol. 2021;59(4):376-388. Published online February 25, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0635-5
-
-
18
View
-
0
Download
-
23
Citations
-
Abstract
- Aquatic microorganisms in the sediment and water column
are closely related; however, their distribution patterns between
these two habitats still remain largely unknown. In this
study, we compared sediment and water microeukaryotic and
bacterial microorganisms in aquaculture ponds from different
areas in China, and analyzed the influencing environmental
factors as well as the inter-taxa relationships. We found that
bacteria were significantly more abundant than fungi in both
sediment and water, and the bacterial richness and diversity
in sediment were higher than in water in all the sampling
areas, but no significant differences were found between the
two habitats for microeukaryotes. Bacterial taxa could be
clearly separated through cluster analysis between the sediment
and water, while eukaryotic taxa at all classification
levels could not. Spirochaetea, Deltaproteobacteria, Nitrospirae,
Ignavibacteriae, Firmicutes, Chloroflexi, and Lentimicrobiaceae
were more abundantly distributed in sediment,
while Betaproteobacteria, Alphaproteobacter, Cyanobacteria,
Roseiflexaceae, Dinghuibacter, Cryomorphaceae, and Actinobacteria
were more abundant in water samples. For eukaryotes,
only Cryptomonadales were found to be distributed
differently between the two habitats. Microorganisms in sediment
were mainly correlated with enzymes related to organic
matter decomposition, while water temperature, pH, dissolved
oxygen, and nutrient levels all showed significant correlation
with the microbial communities in pond water. Intensive interspecific
relationships were also found among eukaryotes
and bacteria. Together, our results indicated that eukaryotic
microorganisms are distributed less differently between sediment
and water in aquaculture ponds compared to bacteria.
This study provides valuable data for evaluating microbial
distributions in aquatic environments, which may also be of
practical use in aquaculture pond management.
- Effects of mycosubtilin homolog algicides from a marine bacterium, Bacillus sp. SY-1, against the harmful algal bloom species Cochlodinium polykrikoides
-
Seong-Yun Jeong , Hong-Joo Son
-
J. Microbiol. 2021;59(4):389-400. Published online March 29, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1086-8
-
-
13
View
-
0
Download
-
11
Citations
-
Abstract
- The marine bacterium, Bacillus sp. SY-1, produced algicidal
compounds that are notably active against the bloom-forming
alga Cochlodinium polykrikoides. We isolated three algicidal
compounds and identified these as mycosubtilins with
molecular weights of 1056, 1070, and 1084 (designated MS
1056, 1070, and 1084, respectively), based on amino acid
analyses and 1H, 13C, and two-dimensional nuclear magnetic
resonance spectroscopy, including 1H-15N heteronuclear
multiple bond correlation analysis. MS 1056 contains a β-
amino acid residue with an alkyl side chain of C15, which has
not previously been seen in known mycosubtilin families.
MS 1056, 1070, and 1084 showed algicidal activities against
C. polykrikoides with 6-h LC50 values of 2.3 ± 0.4, 0.8 ± 0.2,
and 0.6 ± 0.1 μg/ml, respectively. These compounds also
showed significant algicidal activities against other harmful
algal bloom species. In contrast, MS 1084 showed no significant
growth inhibitory effects against other organisms, including
bacteria and microalgae, although does inhibit the
growth of some fungi and yeasts. These observations imply
that the algicidal bacterium Bacillus sp. SY-1 and its algicidal
compounds could play an important role in regulating the
onset and development of harmful algal blooms in natural
environments.
- Effects of the loss of mismatch repair genes on single-strand annealing between divergent sequences in Saccharomyces cerevisiae
-
Ye-Seul Lim , Ju-Hee Choi , Kyu-Jin Ahn , Min-Ku Kim , Sung-Ho Bae
-
J. Microbiol. 2021;59(4):401-409. Published online March 29, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1076-x
-
-
Abstract
- Eukaryotic genomes contain many duplicated genes closely
located with each other, such as the hexose transporter (HXT)
genes in Saccharomyces cerevisiae. They can potentially recombine
via single-strand annealing (SSA) pathway. SSA between
highly divergent sequences generates heteroduplex
DNA intermediates with many mismatches, which can be
corrected by mismatch repair (MMR), resulting in recombinant
sequences with a single junction point. In this report,
we demonstrate that SSA between HXT1 and HXT4 genes
in MMR-deficient yeast cells produces recombinant genes
with multiple-junctions resulting from alternating HXT1 and
HXT4 tracts. The mutations in MMR genes had differential
effects on SSA frequencies; msh6Δ mutation significantly
stimulated SSA events, whereas msh2Δ and msh3Δ slightly
suppressed it. We set up an assay that can identify a pair of
recombinant genes derived from a single heteroduplex DNA.
As a result, the recombinant genes with multiple-junctions
were found to accompany genes with single-junctions. Based
on the results presented here, a model was proposed to generate
multiple-junctions in SSA pathway involving an alternative
short-patch repair system.
- Crystal structure of human LC8 bound to a peptide from Ebola virus VP35
-
Dahwan Lim , Ho-Chul Shin , Joon Sig Choi , Seung Jun Kim , Bonsu Ku
-
J. Microbiol. 2021;59(4):410-416. Published online February 25, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0641-7
-
-
11
View
-
0
Download
-
4
Citations
-
Abstract
- Zaire ebolavirus, commonly called Ebola virus (EBOV), is an
RNA virus that causes severe hemorrhagic fever with high
mortality. Viral protein 35 (VP35) is a virulence factor encoded
in the EBOV genome. VP35 inhibits host innate immune
responses and functions as a critical cofactor for viral
RNA replication. EBOV VP35 contains a short conserved
motif that interacts with dynein light chain 8 (LC8), which
serves as a regulatory hub protein by associating with various
LC8-binding proteins. Herein, we present the crystal structure
of human LC8 bound to the peptide comprising residues
67−76 of EBOV VP35. Two VP35 peptides were found to
interact with homodimeric LC8 by extending the central β-
sheets, constituting a 2:2 complex. Structural analysis demonstrated
that the intermolecular binding between LC8 and
VP35 is mainly sustained by a network of hydrogen bonds
and supported by hydrophobic interactions in which Thr73
and Thr75 of VP35 are involved. These findings were verified
by binding measurements using isothermal titration calorimetry.
Biochemical analyses also verified that residues 67−76
of EBOV VP35 constitute a core region for interaction with
LC8. In addition, corresponding motifs from other members
of the genus Ebolavirus commonly bound to LC8 but with
different binding affinities. Particularly, VP35 peptides originating
from pathogenic species interacted with LC8 with
higher affinity than those from noninfectious species, suggesting
that the binding of VP35 to LC8 is associated with
the pathogenicity of the Ebolavirus species.
- Effects of multi-species probiotic supplementation on alcohol metabolism in rats
-
Tae-Joong Lim , Sanghyun Lim , Jong Hyun Yoon , Myung Jun Chung
-
J. Microbiol. 2021;59(4):417-425. Published online March 29, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0573-2
-
-
11
View
-
0
Download
-
12
Citations
-
Abstract
- Probiotics are known to protect against liver damage induced
by the alcohol and acetaldehyde accumulation associated with
alcohol intake. However, there have been few studies of the
direct effect of probiotics on alcohol metabolism, and the
types of probiotics that were previously analyzed were few in
number. Here, we investigated the effects of 19 probiotic species
on alcohol and acetaldehyde metabolism. Four probiotic
species that had a relatively high tolerance to alcohol and metabolized
alcohol and acetaldehyde effectively were identified:
Lactobacillus gasseri CBT LGA1, Lactobacillus casei CBT
LC5, Bifidobacterium lactis CBT BL3, and Bifidobacterium
breve CBT BR3. These species also demonstrated high mRNA
expression of alcohol and acetaldehyde dehydrogenases. Pro-
AP4, a mixture of these four probiotics species and excipient,
was then administered to rats for 2 weeks in advance of acute
alcohol administration. The serum alcohol and acetaldehyde
concentrations were significantly lower in the ProAP4-administered
group than in the control and excipient groups.
Thus, the administration of ProAP4, containing four probiotic
species, quickly lowers blood alcohol and acetaldehyde concentrations
in an alcohol and acetaldehyde dehydrogenasedependent
manner. Furthermore, the serum alanine aminotransferase
activity, which is indicative of liver damage, was
significantly lower in the ProAP4 group than in the control
group. The present findings suggest that ProAP4 may be an
effective means of limiting alcohol-induced liver damage.
- Influences of genetically perturbing synthesis of the typical yellow pigment on conidiation, cell wall integrity, stress tolerance, and cellulase production in Trichoderma reesei
-
Weixin Zhang , Ning An , Junqi Guo , Zhixing Wang , Xiangfeng Meng , Weifeng Liu
-
J. Microbiol. 2021;59(4):426-434. Published online January 26, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0433-0
-
-
14
View
-
0
Download
-
14
Citations
-
Abstract
- The prominent protein producing workhorse Trichoderma
reesei secretes a typical yellow pigment that is synthesized
by a gene cluster including two polyketide synthase encoding
genes sor1 and sor2. Two transcription factors (YPR1 and
YPR2) that are encoded in the same cluster have been shown
to regulate the expression of the sor genes. However, the physiological
relevance of the yellow pigment synthesis in T.
reesei is not completely clear. In this study, a yellow pigment
hyper-producer OEypr1 and three yellow pigment non-producers,
OEypr1-sor1, Δypr1, and OEypr2, were constructed.
Their phenotypic features in mycelial growth, conidiation,
cell wall integrity, stress tolerance, and cellulase production
were determined. Whereas hyperproduction of the yellow pigment
caused significant defects in all the physiological aspects
tested, the non-producers showed similar colony growth, but
improved conidiation, maintenance of cell wall integrity, and
stress tolerance compared to the control strain. Moreover, in
contrast to the severely compromised extracellular cellobiohydrolase
production in the yellow pigment hyperproducer,
loss of the yellow pigment hardly affected induced cellulase
gene expression. Our results demonstrate that interfering with
the yellow pigment synthesis constitutes an engineering strategy
to endow T. reesei with preferred features for industrial
application.
- Molecular mechanism of Escherichia coli H10407 induced diarrhoea and its control through immunomodulatory action of bioactives from Simarouba amara (Aubl.)
-
Hegde Veena , Sandesh K. Gowda , Rajeshwara N. Achur , Nayaka Boramuthi Thippeswamy
-
J. Microbiol. 2021;59(4):435-447. Published online February 25, 2021
-
DOI: https://doi.org/10.1007/s12275-021-0423-2
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- Enterotoxigenic Escherichia coli (ETEC) infection is a major
cause of death in children under the age of five in developing
countries. ETEC (O78:H11:CFA/I:LT+:ST+) mechanism
has been studied in detail with either heat labile (LT) or heat
stable (ST) toxins using in vitro and in vivo models. However,
there is no adequate information on ETEC pathogenesis producing
both the toxins (LT, ST) in BALB/c mice model. In this
study, female mice have been employed to understand ETEC
H10407 infection induced changes in physiology, biochemical
and immunological patterns up to seven days post-infection
and the antidiarrhoeal effect of Simarouba amara
(Aubl.) bark aqueous extract (SAAE) has also been looked
into. The results indicate that BALB/c is sensitive to ETEC
infection resulting in altered jejunum and ileum histomorphology.
Withal, ETEC influenced cAMP, PGE2, and NO
production resulting in fluid accumulation with varied Na+,
K+, Cl-, and Ca2+ levels. Meanwhile, ETEC subverted expression
of IL-1β, intestine alkaline phosphatase (IAP), and myeloperoxidase
(MPO) in jejunum and ileum. Our data also indicate
the severity of pathogenesis reduction which might be
due to attainment of equilibrium after reaching optimum rate
of infection. Nevertheless, degree of pathogenesis was highly
significant (p < 0.01) in all the studied parameters. Besides
that, SAAE was successful in reducing the infectious diarrhoea
by inhibiting ETEC H10407 in intestine (jejunum and
ileum), and shedding in feces. SAAE decreased cAMP, PGE2,
and fluid accumulation effectively and boosted the functional
activity of immune system in jejunum and ileum IAP, MPO,
IL-1β, and nitric oxide.
TOP