Previous issues
- Page Path
-
HOME
> Browse Articles
> Previous issues
- Volume 58(8); August 2020
-
Review
- Recent advances in the development of β-lactamase inhibitors
-
Shivakumar S. Jalde , Hyun Kyung Choi
-
J. Microbiol. 2020;58(8):633-647. Published online July 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0285-z
-
-
17
View
-
1
Download
-
20
Citations
-
Abstract
- β-Lactam antibiotics are the most commonly prescribed antibiotics
worldwide; however, antimicrobial resistance (AMR)
is a global challenge. The β-lactam resistance in Gram-negative
bacteria is due to the production of β-lactamases, including
extended-spectrum β-lactamases, metallo-β-lactamases,
and carbapenem-hydrolyzing class D β-lactamases.
To restore the efficacy of BLAs, the most successful strategy
is to use them in combination with β-lactamase inhibitors
(BLI). Here we review the medically relevant β-lactamase
families and penicillins, diazabicyclooctanes, boronic acids,
and novel chemical scaffold-based BLIs, in particular approved
and under clinical development.
Journal Articles
- Production and characterization of melanin pigments derived from Amorphotheca resinae
-
Jeong-Joo Oh , Jee Young Kim , Sun Lul Kwon , Dong-Hyeok Hwang , Yoon-E Choi , Gyu-Hyeok Kim
-
J. Microbiol. 2020;58(8):648-656. Published online May 18, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0054-z
-
-
15
View
-
0
Download
-
15
Citations
-
Abstract
- As melanin has emerged as functional pigment with cosmetic,
health and food applications, the demand for the pigments
is expected to increase. However, the conventional sources
(e.g. mushroom, hair, and wool) of melanin production entail
pigments inside the substrates which requires the costly
extraction procedures, leading to inappropriate scalable production.
In this study, we screened 102 of fungal isolates for
their ability to produce melanin in the supernatant and selected
the only Amorphotheca resinae as a promising candidate.
In the peptone yeast extract glucose broth, A. resinae
produced the melanin rapidly during the autolysis phase of
growth, reaching up 4.5 g/L within 14 days. Structural characterization
of the purified melanin from A. resinae was carried
out by using elemental analysis, electron paramagnetic
resonance, 13C solid-state nuclear magnetic resonance spectroscopy,
and pyrolysis-gas chromatography-mass spectrometry
in comparison with the standard melanins. The results
indicate that the structural properties of A. resinae melanin
is similar to the eumelanin which has a wide range of industrial
uses. For example, the purified melanin from A. resinae
has the potent antioxidant activities as a result of free
radical scavenging assays. Consequently, A. resinae KUC3009
can be a promising candidate for scalable production of industrially
applicable melanin.
- Short-term effects of returning granulated straw on soil microbial community and organic carbon fractions in dryland farming
-
Wei Fan , Jinggui Wu
-
J. Microbiol. 2020;58(8):657-667. Published online June 25, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9266-5
-
-
15
View
-
0
Download
-
28
Citations
-
Abstract
- We conducted a 2-year field experiment which was comprised
of five treatments, namely no straw returning (CK), straw
mulching (SM), straw plowed into the soil (SP), and straw
returned in granulated form (SG). The aim of this study was
to investigate the effects of different straw returning modes
on soil bacterial and fungal community structure and their
relationships to soil organic carbon (SOC) fractions at three
different soil depths (0–20, 20–40, and 40–60 cm) in a dryland
under maize cultivation in Northeast (NE) China. SM,
SP, and SG treatments significantly increased SOC content.
Compared with SM and SP treatments, SG treatment significantly
increased the content of SOC and easily oxidizable
carbon (EOC) in the topsoil (0–20 cm depth), and increased
dissolved organic carbon (DOC) and SOC content of the light
fraction (LFOC) in the 20–40 cm layer. Meanwhile, SG treatment
exhibited the highest microbial biomass C (MBC) content
in all of the three soil depths. SG treatment also enhanced
bacterial richness as well as fungal richness and diversity in the
upper 40 cm of soil. In addition, SG treatment increased the
relative abundance of Proteobacteria in all depths, and had
the highest relative abundance of Basidiomycota in the first
20 cm of soil. SP treatment showed the lowest soil organic
carbon content in all fractions and soil microbial community
composition. SM treatment exhibited similar results to SG
treatment in SOC, DOC, and LFOC contents, and bacterial
diversity in the topsoil and subsoil. As a whole, treatment SG
improved soil quality and maize yield, hence we recommend
returning granulated straw as the most effective practice for
enhancing labile SOC fractions as well as maintaining soil
diversity and microbial richness of arid farmlands in NE
China.
- Simultaneous detection of Salmonella spp., Pseudomonas aeruginosa, Bacillus cereus, and Escherichia coli O157:H7 in environmental water using PMA combined with mPCR
-
Guoyang Xie , Shuang Yu , Wen Li , Dan Mu , Zoraida P. Aguilar , Hengyi Xu
-
J. Microbiol. 2020;58(8):668-674. Published online June 25, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0084-6
-
-
13
View
-
0
Download
-
15
Citations
-
Abstract
- A multiplex polymerase chain reaction (mPCR) with propidium
monoazide (PMA) and internal amplification control
(IAC) for the simultaneous detection of waterborne pathogens
Salmonella spp., Pseudomonas aeruginosa, Bacillus
cereus, and Escherichia coli O157:H7, was developed. This
PMA-IAC-mPCR assay used four new specific primers based
on the genes for invA, ecfX, cesB, and fliC, respectively. A
16S rRNA primer was chosen for IAC to eliminate false negative
results
. The photosensitive dye, propidium monoazide
(PMA) was used to exclude signals from dead bacteria that
could lead to false positive results. In pure culture, the limits
of detection (LOD) were 101 CFU/ml for P. aeruginosa, 102
CFU/ml for both Salmonella spp. and E. coli O157:H7, and
103 CFU/ml for B. cereus, respectively. In addition, with a
6–8 h enrichment of all four bacteria that were combined in
a mixture that was spiked in water sample matrix, the LOD
was 3 CFU/ml for Salmonella spp., 7 CFU/ml for E. coli
O157:H7, 10 CFU/ml for B. cereus and 2 CFU/ml for P.
aeruginosa. This PMA-IAC-mPCR assay holds potential for
application in the multiplex assay of waterborne pathogens.
- In vitro disinfection efficacy and clinical protective effects of common disinfectants against acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio isolates in Pacific white shrimp Penaeus vannamei
-
Peizhuo Zou , Qian Yang , Hailiang Wang , Guosi Xie , Zhi Cao , Xing Chen , Wen Gao , Jie Huang
-
J. Microbiol. 2020;58(8):675-686. Published online July 27, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9537-1
-
-
15
View
-
0
Download
-
3
Citations
-
Abstract
- Acute hepatopancreatic necrosis disease (AHPND) is one
of the most significant bacterial diseases in global shrimp
culture, causing severe economic losses. In the present study,
we carried out in vitro antimicrobial tests to investigate the
disinfection efficacy of 14 common disinfectants toward different
AHPND-causing Vibrio spp., including eight isolates
of V. parahaemolyticus, four isolates of V. campbellii, and
one isolate of V. owensii. Polyhexamethylene biguanidine hydrochloride
(PHMB) was revealed to possess the strongest
inhibitory activity. Through analyzing and evaluating the results
of antimicrobial tests and acute toxicity test, we selected
PHMB and hydrogen peroxide (H2O2) for further clinical
protection test. Clinical manifestations indicated that both
PHMB (2 mg/L and 4 mg/L) and H2O2 (12 mg/L) could effectively
protect juvenile Penaeus vannamei from the infection
of V. parahaemolyticus isolate Vp362 at 106 CFU/ml, and the
survival rate was over 80%. When the bacterial concentration
was reduced to 105 CFU/ml, 104 CFU/ml, and 103 CFU/ml,
the survival rate after treated by 1 mg/L PHMB was 64.44%,
93.33%, and 100%, respectively. According to the results,
PHMB and H2O2 showed a lower toxicity while a better protection
activity, particularly against a lower concentration of
the pathogens. Therefore, these two disinfectants are proved
to be promising disinfectants that can be applied to prevent
and control AHPND in shrimp culture. Moreover, the methods
of this study also provided valuable information for the
prevention of other important bacterial diseases and suggested
a reliable means for screening potential drugs in aquaculture.
- The effects of deletion of cellobiohydrolase genes on carbon source-dependent growth and enzymatic lignocellulose hydrolysis in Trichoderma reesei
-
Meibin Ren , Yifan Wang , Guoxin Liu , Bin Zuo , Yuancheng Zhang , Yunhe Wang , Weifeng Liu , Xiangmei Liu , Yaohua Zhong
-
J. Microbiol. 2020;58(8):687-695. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9630-5
-
-
19
View
-
0
Download
-
7
Citations
-
Abstract
- The saprophytic fungus Trichoderma reesei has long been used
as a model to study microbial degradation of lignocellulosic
biomass. The major cellulolytic enzymes of T. reesei are the
cellobiohydrolases CBH1 and CBH2, which constitute more
than 70% of total proteins secreted by the fungus. However,
their physiological functions and effects on enzymatic hydrolysis
of cellulose substrates are not sufficiently elucidated.
Here, the cellobiohydrolase-encoding genes cbh1 and cbh2
were deleted, individually or combinatively, by using an auxotrophic
marker-recycling technique in T. reesei. When cultured
on media with different soluble carbon sources, all three
deletion strains (Δcbh1, Δcbh2, and Δcbh1Δcbh2) exhibited
no dramatic variation in morphological phenotypes, but their
growth rates increased apparently when cultured on soluble
cellulase-inducing carbon sources. In addition, Δcbh1 showed
dramatically reduced growth and Δcbh1Δcbh2 could hardly
grew on microcrystalline cellulose (MCC), whereas all strains
grew equally on sodium carboxymethyl cellulose (CMC-Na),
suggesting that the influence of the CBHs on growth was carbon
source-dependent. Moreover, five representative cellulose
substrates were used to analyse the influence of the absence
of CBHs on saccharification efficiency. CBH1 deficiency
significantly affected the enzymatic hydrolysis rates of various
cellulose substrates, where acid pre-treated corn stover
(PCS) was influenced the least. CBH2 deficiency reduced the
hydrolysis of MCC, PCS, and acid pre-treated and delignified
corncob but improved the hydrolysis ability of filter paper.
These results demonstrate the specific contributions of
CBHs to the hydrolysis of different types of biomass, which
could facilitate the development of tailor-made strains with
highly efficient hydrolysis enzymes for certain biomass types
in the biofuel industry.
- WasC, a WASP family protein, is involved in cell adhesion and migration through regulation of F-actin polymerization in Dictyostelium
-
Pyeonghwa Jeon , Taeck Joong Jeon
-
J. Microbiol. 2020;58(8):696-702. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0138-9
-
-
14
View
-
0
Download
-
5
Citations
-
Abstract
- The actin cytoskeleton is involved in the regulation of cell
morphology and migration. Wiskott-Aldrich Syndrome proteins
(WASPs) play an important role in controlling actin
polymerization by activating the Arp2/3 complex. The present
study investigated the roles of WasC, one of the 3 WASPs
in Dictyostelium, in cellular processes. Cells lacking WasC
displayed strong cell adhesion and approximately 1.5-fold
increase in F-actin levels as compared to the wild-type cells.
Loss of wasC caused defects in phagocytosis and decreased
the migration speed in chemoattractant-mediated cell migration
but did not affect directionality. WasC was localized to the
protruding region in migrating cells and, transiently and rapidly
translocated to the cell cortex in response to chemoattractant
stimulation, in an F-actin dependent manner. Our
results
suggest that WasC is involved in cell adhesion and
migration by regulating F-actin polymerization at the leading
edge of migrating cells, probably as a negative regulator.
The increased strength of adhesion in wasC null cells is likely
to decrease the migration speed but not the directionality.
- Performance comparison of fecal preservative and stock solutions for gut microbiome storage at room temperature
-
Chanhyeok Park , Kyeong Eui Yun , Jeong Min Chu , Ji Yeon Lee , Chang Pyo Hong , Young Do Nam , Jinuk Jeong , Kyudong Han , Yong Ju Ahn
-
J. Microbiol. 2020;58(8):703-710. Published online June 25, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0092-6
-
-
15
View
-
0
Download
-
9
Citations
-
Abstract
- The gut microbiome, which is symbiotic within the human
body, assists in human digestion. It plays significant roles
in identifying intestinal disease as well as in maintaining a
healthy body with functional immune and metabolic activities.
To confirm the consistency of fecal intestinal microbial
research, it is necessary to study the changes in intestinal microbial
flora according to the fecal collection solution and
storage period. We collected fecal samples from three healthy
Korean adults. To examine the efficacy of fecal collection solution,
we used NBgene-Gut, OMNIgene-Gut, 70% ethanol
(Ethanol-70%), and RNAlater. The samples were stored for
up to two months at room temperature using three different
methods
, and we observed changes in microbial communities
over time. We analyzed clusters of changes in the microbial
flora by observing fecal stock solutions and metagenome
sequencing performed over time. In particular, we confirmed
the profiling of alpha and beta diversity and microbial classification
according to the differences in intestinal environment
among individuals. We also confirmed that the microbial
profile remained stable for two months and that the microbial
profile did not change significantly over time. In addition,
our results suggest the possibility of verifying microbial
profiling even for long-term storage of a single sample. In conclusion,
collecting fecal samples using a stock solution rather
than freezing feces seems to be relatively reproducible and
stable for GUT metagenome analysis. Therefore, stock solution
tubes in intestinal microbial research can be used without
problems.
- Development of a real-time loop-mediated isothermal amplification method for the detection of severe fever with thrombocytopenia syndrome virus
-
Jae Woong Lee , Yu-Jung Won , Lae Hyung Kang , Sung-Geun Lee , Seung-Won Park , Soon-Young Paik
-
J. Microbiol. 2020;58(8):711-715. Published online May 18, 2020
-
DOI: https://doi.org/10.1007/s12275-020-0109-1
-
-
17
View
-
0
Download
-
9
Citations
-
Abstract
- Severe fever with thrombocytopenia syndrome (SFTS) is being
reported annually in South Korea since its first detection
there in 2010. The causal agent is a negative-strand RNA
virus 80–100 nm in diameter. It causes fever, thrombocytopenia,
leukocytopenia, gastrointestinal symptoms, and neural
symptoms. The mortality rate of SFTS was 32.6% among 172
case
s reported from 2012 to 2015 in South Korea. Thus, is
necessary to develop an effective diagnostic method that selectively
identifies the isolates circulating in South Korea. The
real-time reverse transcription loop-mediated isothermal amplification
(RT-LAMP) assay is a simple, rapid, and sensitive
approach for molecular diagnosis. Here, we designed novel
primers for this assay and found that the technique had very
high specificity, sensitivity, and efficiency. This real-time RTLAMP
approach using the novel primers developed herein
can be applied for early diagnosis of SFTSV strains in South
Korea to reduce the mortality rate of SFTS.
- Inhibitory effects of piceatannol on human cytomegalovirus (hCMV) in vitro
-
San-Ying Wang , Jing Zhang , Xiao-Gang Xu , Hui-Li Su , Wen-Min Xing , Zhong-Shan Zhang , Wei-Hua Jin , Ji-Huan Dai , Ya-Zhen Wang , Xin-Yue He , Chuan Sun , Jing Yan , Gen-Xiang Mao
-
J. Microbiol. 2020;58(8):716-723. Published online June 10, 2020
-
DOI: https://doi.org/10.1007/s12275-020-9528-2
-
-
17
View
-
0
Download
-
11
Citations
-
Abstract
- Human cytomegalovirus (hCMV) is a ubiquitous herpesvirus,
which results in the establishment of a latent infection that
persists throughout the life of the host and can be reactivated
when the immunity is low. Currently, there is no vaccine for
hCMV infection, and the licensed antiviral drugs mainly target
the viral enzymes and have obvious adverse reactions.
Thus, it is important to search for compounds with antihCMV
properties. The present study aimed to investigate the
suppressive effects of piceatannol on hCMV Towne strain
infection and the putative underlying mechanisms using human
diploid fibroblast WI-38 cells. Piceatannol supplementation
prevented the lytic changes induced by hCMV infection
in WI-38 cells. Furthermore, piceatannol suppressed the
expression of hCMV immediate-early (IE) and early (E) proteins
as well as the replication of hCMV DNA in a dose-dependent
manner. Moreover, hCMV-induced cellular senescence
was suppressed by piceatannol, as shown by a decline
in the senescence-associated β-galactosidase (SA-β-Gal) activity
and decreased production of intracellular reactive oxygen
species (ROS). p16INK4a, a major senescence-associated
molecule, was dramatically elevated by current hCMV infection
that was attenuated by pre-incubation with piceatannol
in a dose-dependent manner. These results demonstrated
that piceatannol suppressed the hCMV infection via
inhibition of the activation of p16INK4a and cellular senescence
induced by hCMV. Together, these findings indicate piceatannol
as a novel and potent anti-hCMV agent with the potential
to be developed as an effective treatment for chronic
hCMV infection.
TOP