Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
29 "genome"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil.
Abhilash Bhattacharjee, Anil Kumar Singh
J. Microbiol. 2024;62(7):511-523.   Published online June 21, 2024
DOI: https://doi.org/10.1007/s12275-024-00129-w
  • 88 View
  • 0 Download
AbstractAbstract
Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Review
Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis.
Anyeseu Park, Chanhee Lee, Jeong Yoon Lee
J. Microbiol. 2024;62(5):393-407.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00112-5
  • 24 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Journal Articles
miR-135b Aggravates Fusobacterium nucleatum-Induced Cisplatin Resistance in Colorectal Cancer by Targeting KLF13
Wei Zeng , Jia Pan , Guannan Ye
J. Microbiol. 2024;62(2):63-73.   Published online February 24, 2024
DOI: https://doi.org/10.1007/s12275-023-00100-1
  • 34 View
  • 1 Download
  • 3 Citations
AbstractAbstract
Cisplatin resistance is the main cause of colorectal cancer (CRC) treatment failure, and the cause has been reported to be related to Fusobacterium nucleatum (Fn) infection. In this study, we explored the role of Fn in regulating cisplatin resistance of CRC cells and its underlying mechanism involved. The mRNA and protein expressions were examined by qRT-PCR and western blot. Cell proliferation and cell apoptosis were assessed using CCK8 and flow cytometry assays, respectively. Dual-luciferase reporter gene assay was adopted to analyze the molecular interactions. Herein, our results revealed that Fn abundance and miR-135b expression were markedly elevated in CRC tissues, with a favorable association between the two. Moreover, Fn infection could increase miR-135b expression via a concentration-dependent manner, and it also enhanced cell proliferation but reduced apoptosis and cisplatin sensitivity by upregulating miR-135b. Moreover, KLF13 was proved as a downstream target of miR-135b, of which overexpression greatly diminished the promoting effect of miR-135b or Fn-mediated cisplatin resistance in CRC cells. In addition, it was observed that upstream 2.5 kb fragment of miR-135b promoter could be interacted by β-catenin/TCF4 complex, which was proved as an effector signaling of Fn. LF3, a blocker of β-catenin/TCF4 complex, was confirmed to diminish the promoting role of Fn on miR-135b expression. Thus, it could be concluded that Fn activated miR-135b expression through TCF4/β-catenin complex, thereby inhibiting KLF13 expression and promoting cisplatin resistance in CRC.
Prevalence of Indigenous Antibiotic‑Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra‑Broad Specificity
Jaein Choe , Su-Hyeon Kim , Ji Min Han , Jong-Hoon Kim , Mi-Sun Kwak , Do-Won Jeong , Mi-Kyung Park
J. Microbiol. 2023;61(12):1063-1073.   Published online January 2, 2024
DOI: https://doi.org/10.1007/s12275-023-00098-6
  • 26 View
  • 0 Download
AbstractAbstract
The consumption of fresh produce has led to increase in antibiotic-resistant (AR) Salmonella outbreaks. In this study, indigenous Salmonella was isolated from a total of two hundred-two samples including fresh produce and agricultural environmental samples in Korea. After biochemical confirmation using the Indole, Methyl Red, Voges-Proskauer, Citrate tests, presumable Salmonella isolates were identified by 16S rRNA sequencing. Identified Salmonella isolates were evaluated for antibiotic susceptibility against twenty-two antibiotics. The specificity and the efficiency of plating (EOP) of vB_SalS_KFSSM were evaluated against fifty-three bacterial strains. Twenty-five suspected Salmonella were isolated and confirmed by the positive
result
for methyl red and citrate, of which ten were identified as Salmonella spp. through 16S rRNA gene sequencing. Eight Salmonella isolates (4.0%, n = 8/202) were resistant to at least one antibiotic, among which five were multi-drug resistant. As a lytic phage against Salmonella spp. CMGS-1, vB_SalS_KFSSM was isolated from cow manure. The phage was observed as a tailed phage belonging to the class Caudoviricetes. It exhibited an intra-broad specificity against four indigenous AR Salmonella isolates, two indigenous Salmonella isolates, and five other Salmonella serotypes with great efficiencies (EOP ≥ 0.75). Thus, this study suggested the potential of vB_SalS_KFSSM to combat indigenous AR Salmonella.
Genetic and Functional Characterization of a Salicylate 1‑monooxygenase Located on an Integrative and Conjugative Element (ICE) in Pseudomonas stutzeri AJR13
Igor Ivanovski , Gerben J. Zylstra
J. Microbiol. 2023;61(12):1025-1032.   Published online December 15, 2023
DOI: https://doi.org/10.1007/s12275-023-00093-x
  • 25 View
  • 0 Download
AbstractAbstract
Pseudomonas stutzeri strain AJR13 was isolated for growth on the related compounds biphenyl (BPH) and diphenylmethane (DPM). The BPH and DPM degradative pathway genes are present on an integrative and conjugative element (ICE) in the chromosome. Examination of the genome sequence of AJR13 revealed a gene encoding a salicylate 1-monooxygenase (salA) associated with the ICE even though AJR13 did not grow on salicylate. Transfer of the ICE to the well-studied Pseudomonas putida KT2440 resulted in a KT2440 strain that could grow on salicylate. Knockout mutagenesis of the salA gene on the ICE in KT2440 eliminated the ability to grow on salicylate. Complementation of the knockout with the cloned salA gene restored growth on salicylate. Transfer of the cloned salA gene under control of the lac promoter to KT2440 resulted in a strain that could grow on salicylate. Heterologous expression of the salA gene in E. coli BL21 DE3 resulted in the production of catechol from salicylate, confirming that it is indeed a salicylate 1-monooxygenase. Interestingly, transfer of the cloned salA gene under control of the lac promoter to AJR13 resulted in a strain that could now grow on salicylate, suggesting that gene expression for the downstream catechol pathway is intact.
The β‑Lactamase Activity at the Community Level Confers β‑Lactam Resistance to Bloom‑Forming Microcystis aeruginosa Ce
Yerim Park , Wonjae Kim , Minkyung Kim , Woojun Park
J. Microbiol. 2023;61(9):807-820.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00082-0
  • 15 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Many freshwater cyanobacteria, including Microcystis aeruginosa, lack several known antibiotic resistance genes; however, both axenic and xenic M. aeruginosa strains exhibited high antibiotic resistance against many antibiotics under our tested concentrations, including colistin, trimethoprim, and kanamycin. Interestingly, axenic PCC7806, although not the xenic NIBR18 and NIBR452 strains, displayed susceptibility to ampicillin and amoxicillin, indicating that the associated bacteria in the phycosphere could confer such antibiotic resistance to xenic strains. Fluorescence and scanning electron microscopic observations revealed their tight association, leading to possible community-level β-lactamase activity. Combinatory treatment of ampicillin with a β-lactamase inhibitor, sulbactam, abolished the ampicillin resistance in the xenic stains. The nitrocefin-based assay confirmed the presence of significant community-level β-lactamase activity. Our tested low ampicillin concentration and high β-lactamase activity could potentially balance the competitive advantage of these dominant species and provide opportunities for the less competitive species, thereby resulting in higher bacterial diversity under ampicillin treatment conditions. Non-PCR-based metagenome data from xenic NIBR18 cultures revealed the dominance of blaOXArelated antibiotic resistance genes followed by other class A β-lactamase genes (AST-1 and FAR-1). Alleviation of ampicillin toxicity could be observed only in axenic PCC7806, which had been cocultured with β-lactamase from other freshwater bacteria. Our study suggested M. aeruginosa develops resistance to old-class β-lactam antibiotics through altruism, where associated bacteria protect axenic M. aeruginosa cells.
Description of Luteibacter aegosomatis sp. nov., Luteibacter aegosomaticola sp. nov., and Luteibacter aegosomatissinici sp. nov. isolated from the Intestines of Aegosoma sinicum Larvae
Hae-In Joe , Jee-Won Choi , June-Young Lee , Hojun Sung , Su-Won Jeong , Yun-Seok Jeong , Jae-Yun Lee , Jin-Woo Bae
J. Microbiol. 2023;61(6):603-613.   Published online May 5, 2023
DOI: https://doi.org/10.1007/s12275-023-00051-7
  • 18 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Three novel bacterial strains, 321T, 335T, and 353T, were isolated from the intestines of Aegosoma sinicum larvae collected from Paju-Si, South Korea. The strains were Gram-negative, obligate aerobe and had rod-shaped cells with a single flagellum. The three strains belonged to the genus Luteibacter in the family Rhodanobacteraceae and shared < 99.2% similarity in their 16S rRNA gene sequence and < 83.56% similarity in thier whole genome sequence. Strains 321T, 335T, and 353T formed a monophyletic clade with Luteibacter yeojuensis KACC 11405T, L. anthropi KACC 17855T, and L. rhizovicinus KACC 12830T, with sequence similarities of 98.77–98.91%, 98.44–98.58%, and 97.88–98.02%, respectively. Further genomic analyses, including the construction of the Up-to-date Bacterial Core Gene (UBCG) tree and assessment of other genome-related indices, indicated that these strains were novel species belonging to the genus Luteibacter. All three strains contained ubiquinone Q8 as their major isoprenoid quinone and iso-C15:0 and summed feature 9 ( C16:0 10-methyl and/or iso-C17:1 ω9c) as their major cellular fatty acids. Phosphatidylethanolamine and diphosphatidylglycerol were the major polar lipids in all the strains. The genomic DNA G + C contents of strains 321T, 335T, and 353T were 66.0, 64.5, and 64.5 mol%, respectively. Based on multiphasic classification, strains 321T, 335T, and 353T were classified into the genus Luteibacter as the type strains of novel species, for which the names Luteibacter aegosomatis sp. nov., Luteibacter aegosomaticola sp. nov., and Luteibacter aegosomatissinici sp. nov. are proposed, respectively.
Review
Influence of Microbiota on Vaccine Effectiveness: “Is the Microbiota the Key to Vaccine‑induced Responses?”
So-Hee Hong
J. Microbiol. 2023;61(5):483-494.   Published online April 13, 2023
DOI: https://doi.org/10.1007/s12275-023-00044-6
  • 16 View
  • 0 Download
  • 6 Citations
AbstractAbstract
Vaccines are one of the most powerful tools for preventing infectious diseases. To effectively fight pathogens, vaccines should induce potent and long-lasting immune responses that are specific to the pathogens. However, not all vaccines can induce effective immune responses, and the responses vary greatly among individuals and populations. Although several factors, such as age, host genetics, nutritional status, and region, affect the effectiveness of vaccines, increasing data have suggested that the gut microbiota is critically associated with vaccine-induced immune responses. In this review, I discuss how gut microbiota affects vaccine effectiveness based on the clinical and preclinical data, and summarize possible underlying mechanisms related to the adjuvant effects of microbiota. A better understanding of the link between vaccine-induced immune responses and the gut microbiota using high-throughput technology and sophisticated system vaccinology approaches could provide crucial insights for designing effective personalized preventive and therapeutic vaccination strategies.
Journal Articles
Microbial metabolic responses and CO2 emissions differentiated by soil water content variation in subarctic tundra soils
Dockyu Kim , Namyi Chae , Mincheol Kim , Sungjin Nam , Tai Kyoung Kim , Ki-Tea Park , Bang Yong Lee , Eungbin Kim , Hyoungseok Lee
J. Microbiol. 2022;60(12):1130-1138.   Published online November 24, 2022
DOI: https://doi.org/10.1007/s12275-022-2378-3
  • 21 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Recent rapid air temperature increases across the northernlatitude tundra have prolonged permafrost thawing and snow melting periods, resulting in increased soil temperature (Ts) and volumetric soil water content (SWC). Under prolonged soil warming at 8°C, Alaskan tundra soils were incubated in a microcosm system and examined for the SWC differential influence on the microbial decomposition activity of large molecular weight (MW) humic substances (HS). When one microcosm soil (AKC1-1) was incubated at a constant SWC of 41% for 90 days (T = 90) and then SWC was gradually decreased from 41% to 29% for another T = 90, the initial HS was partly depolymerized. In contrast, in AKC1-2 incubated at a gradually decreasing SWC from the initial 32% to 10% for T = 90 and then increasing to 27% for another T = 90, HS depolymerization was undetected. Overall, the microbial communities in AKC1-1 could maintain metabolic activity at sufficient and constant SWC during the initial T = 90 incubation. In contrast, AKC1-2 microbes may have been damaged by drought stress during the drying SWC regimen, possibly resulting in the loss of HS decomposition activity, which did not recover even after re-wetting to an optimal SWC range (20–40%). After T = 90, the CO2 production in both treatments was attributed to the increased decomposition of small-MW organic compounds (including aerobic HS-degradative products) within an optimal SWC range. We expect this study to provide new insights into the early effects of warming- and topography-induced SWC variations on the microbial contribution to CO2 emissions via HS decomposition in northern-latitude tundra soil.
Fus3 and Tpk2 protein kinases regulate the phosphorylation-dependent functions of RNA helicase Dhh1 in yeast mating and Ste12 protein expression
Jaehee Hwang , Daehee Jung , Jinmi Kim
J. Microbiol. 2022;60(8):843-848.   Published online July 14, 2022
DOI: https://doi.org/10.1007/s12275-022-2213-x
  • 17 View
  • 0 Download
AbstractAbstract
Decapping of mRNA is a key regulatory step for mRNA decay and translation. The RNA helicase, Dhh1, is known as a decapping activator and translation repressor in yeast Saccharomyces cerevisiae. Dhh1 also functions as a gene-specific positive regulator in the expression of Ste12, a mating-specific transcription factor. A previous study showed that the Nerminal phosphorylation of Dhh1 regulates its association with the mRNA-binding protein, Puf6, to affect the protein translation of Ste12. Here, we investigated the roles of the phosphorylated residues of Dhh1 in yeast mating process and Ste12 expression. The phospho-deficient mutation, DHH1- T10A, was associated with decreased diploid formation during mating and decreased level of the Ste12 protein in response to α-mating pheromone. A kinase overexpression analysis revealed that Ste12 protein expression was affected by overexpression of Fus3 MAP kinase or Tpk2 kinase. Tpk2 was shown to be responsible for phosphorylation of Dhh1 at Thr10. Our study shows that overexpression of Fus3 or Tpk2 alters the Dhh1-Puf6 protein interaction and thereby affects Ste12 protein expression.
Characterization of antibiotic-resistant, coagulase-negative staphylococci from fresh produce and description of Staphylococcus shinii sp. nov. isolated from chives
Gyu-Sung Cho , Bo Li , Erik Brinks , Charles , M.A.P. Franz
J. Microbiol. 2022;60(9):877-889.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-2100-5
  • 22 View
  • 0 Download
  • 5 Citations
AbstractAbstract
Coagulase-negative Staphylococcus (CoNS) species may possess antibiotic resistance genes and have been associated with nosocomial infections. In this study, 91 CoNS with decreased susceptibility to oxacillin were isolated from fresh produce using oxacillin containing agar plates. Their antibiotic resistances were determined phenotypically and all isolates were identified by rep-PCR, 16S rRNA and rpoB gene sequencing. Furthermore, the genomes of representative strains were sequenced in order to confirm species identification by phylogenomics. The majority (64 of 91) of the CoNS strains could be identified as Mammaliicoccus (M.) fleurettii, while 13 were identified as M. sciuri, 8 as M. vitulinus, 2 as Staphylococcus (S.) epidermidis and single strains each as S. warneri, S. xylosus, Staphylococcus spp. and S. casei. Most of the strains were generally susceptible to clinically-relevant antibiotics, but only few (< 7%) strains possessed multiple resistances. Both oxacillin and cefoxitin resistant isolates were considered to be presumptive methicillin-resistant CoNS. From whole genome sequencing data of 6 representative strains, the mecA gene, accessory genes and the SCC loci were compared, which revealed high variability between some of the strains. The major fatty acids of K22-5MT strain included anteiso-C15:0, iso-C15:0, iso-C17:0, anteiso-C17:0, C18:0, and C20:0. Average nucleotide identity and digital DNA-DNA hybridization values indicated that Staphylococcus strain K22-5MT was below the species delineation cutoff values for ANI (less than 91%) and DDH (less than 44.4%), with the most closely related species being the S. pseudoxylosus S04009T type strain. Thus, strain K22- 5MT (=DSM 112532T, =LMG 32324T) represents a novel species, for which the name Staphylococcus shinii sp. nov. is proposed.
Meta-Analysis
Proposal of a health gut microbiome index based on a meta-analysis of Korean and global population datasets
Hyun-Seok Oh , Uigi Min , Hyejin Jang , Namil Kim , Jeongmin Lim , Mauricio Chalita , Jongsik Chun
J. Microbiol. 2022;60(5):533-549.   Published online March 31, 2022
DOI: https://doi.org/10.1007/s12275-022-1526-0
  • 23 View
  • 0 Download
  • 9 Citations
AbstractAbstract
The disruption of the human gut microbiota has been linked to host health conditions, including various diseases. However, no reliable index for measuring and predicting a healthy microbiome is currently available. Here, the sequencing data of 1,663 Koreans were obtained from three independent studies. Furthermore, we pooled 3,490 samples from public databases and analyzed a total of 5,153 fecal samples. First, we analyzed Korean gut microbiome covariates to determine the influence of lifestyle on variation in the gut microbiota. Next, patterns of microbiota variations across geographical locations and disease statuses were confirmed using a global cohort and disease data. Based on comprehensive comparative analysis, we were able to define three enterotypes among Korean cohorts, namely, Prevotella type, Bacteroides type, and outlier type. By a thorough categorization of dysbiosis and the evaluation of microbial characteristics using multiple datasets, we identified a wide spectrum of accuracy levels in classifying health and disease states. Using the observed microbiome patterns, we devised an index named the gut microbiome index (GMI) that could consistently predict health conditions from human gut microbiome data. Compared to ecological metrics, the microbial marker index, and machine learning approaches, GMI distinguished between healthy and non-healthy individuals with a higher accuracy across various datasets. Thus, this study proposes a potential index to measure health status of gut microbiome that is verified from multiethnic data of various diseases, and we expect this model to facilitate further clinical application of gut microbiota data in future.
Journal Articles
Evaluation of Cyc1 protein stability in Acidithiobacillus ferrooxidans bacterium after E121D mutation by molecular dynamics simulation to improve electron transfer
Mahnaz Shojapour , Somayeh Farahmand , Faezeh Fatemi , Marzieh Dehghan Shasaltaneh
J. Microbiol. 2022;60(5):526-532.   Published online March 14, 2022
DOI: https://doi.org/10.1007/s12275-022-1645-7
  • 20 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Cyc1 (Cytochrome c552) is a protein in the electron transport chain of the Acidithiobacillus ferrooxidans (Af) bacteria which obtain their energy from oxidation Fe2+ to Fe3+. The electrons are directed through Cyc2, RCY (rusticyanin), Cyc1, and Cox aa3 proteins to O2. Cyc1 protein consists of two chains, A and B. In the present study, a novel mutation (E121D) in the A chain of Cyc1 protein was selected due to electron receiving from Histidine 143 of RCY. Then, the changes performed in the E121D mutant were evaluated by MD simulations analyzes. Cyc1 and RCY proteins were docked by a Patchdock server. By E121D mutation, the connection between Zn 1388 of chain B and aspartate 121 of chain A weaken. Asp 121 gets farther from Zn 1388. Therefore, the aspartate gets closer to Cu 1156 of the RCY leading to the higher stability of the RCY/ Cyc1 complex. Further, an acidic residue (Glu121) becomes a more acidic residue (Asp121) and improves the electron transfer to Cyc1 protein. The results of RMSF analysis showed further ligand flexibility in mutation. This leads to fluctuation of the active site and increases redox potential at the mutation point and the speed of electron transfer. This study also predicts that in all respiratory chain proteins, electrons probably enter the first active site via glutamate and exit histidine in the second active site of each respiratory chain protein.
Cytophaga hutchinsonii chu_2177, encoding the O-antigen ligase, is essential for cellulose degradation
Yahong Tan , Wenxia Song , Lijuan Gao , Weican Zhang , Xuemei Lu
J. Microbiol. 2022;60(4):364-374.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1531-3
  • 19 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Cytophaga hutchinsonii can efficiently degrade crystalline cellulose, in which the cell surface cellulases secreted by the type IX secretion system (T9SS) play important roles, but the degradation mechanism remains unclear, and the anchor mechanism of cellulases on the outer membrane in C. hutchinsonii has not been studied. Here, chu_2177 was identified by transposon mutagenesis and was proved to be indispensable for cellulose utilization in C. hutchinsonii. Disruption of chu_2177 resulted in O-antigen deficiency and chu_ 177 could confer O-antigen ligase activity upon an Escherichia coli waal mutant, indicating that chu_2177 encoded the Ontigen ligase. Moreover, deletion of chu_2177 caused defects in cellulose utilization, cell motility, biofilm formation, and stress resistance. Further study showed that the endoglucanase activity was markedly decreased in the outer membrane but was increased in the culture fluid without chu_2177. Western blot proved that endoglucanase CHU_1336 was not located on the outer membrane but was released in the culture fluid of the Δ2177 mutant. Further proteomics analysis showed that many cargo proteins of T9SS were missing in the outer membrane of the Δ2177 mutant. Our study revealed that the deletion of chu_2177 affected the localization of many T9SS cargo proteins including cellulases on the outer membrane of C. hutchinsonii.
Changpingibacter yushuensis gen. nov., sp. nov., isolated from fluvial sediment in Qinghai Tibet Plateau of China
Yifan Jiao , Sihui Zhang , Jing Yang , Xin-He Lai , Kui Dong , Yanpeng Cheng , Mingchao Xu , Wentao Zhu , Shan Lu , Dong Jin , Ji Pu , Ying Huang , Liyun Liu , Suping Wang , Jianguo Xu
J. Microbiol. 2022;60(2):147-155.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1199-8
  • 16 View
  • 0 Download
  • 3 Citations
AbstractAbstract
Two facultatively anaerobic, short rod-shaped, non-motile, Gram-stain-positive, unknown bacterial strains (JY-X040T and JY-X174) were isolated from fluvial sediments of Tongtian River in Yushu Tibetan Autonomous Prefecture, Qinghai province, China. Cells formed translucent, gray, round and convex colonies, with a diameter of less than 0.5 mm after 5 days of incubation at 30°C on brain heart infusion-5% sheep blood agar. The 16S rRNA gene sequence similarity between strain JY-X040T and Fudania jinshanensis 313T is 93.87%. In the four phylogenetic trees constructed based on the 16S rRNA gene and 423 core genes, the two isolates form an independent branch, phylogenetically closest to F. jinshanensis 313T, but could not be classified as a member of the genus Fudania or any other genus of the family Arcanobacteriaceae. The DNA G + C content of strain JY-X040T was 57.8%. Calculation
results
of average nucleotide identity, digital DNADNA hybridization value and amino acid identity between strain JY-X040T and F. jinshanensis 313T are 69.9%, 22.9%, and 64.1%. The major cellular fatty acids were C16:0 (23%) and C18:1ω9c (22%). The cell-wall peptidoglycan type was A5α (L-Lys-L-Ala-L-Lys-D-Glu). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, phosphatidylinositol mannoside and four unidentified components. The whole-cell sugars contained rhamnose and ribose. MK-10(H4) was the sole respiratory quinone. The minimum inhibitory concentration of streptomycin was 32 μg/ml. All physiological, biochemical, chemotaxonomic and genomic characteristics support that strains JY-X040T and JY-X174 represent members of a novel species in a new genus, Changpingibacter yushuensis gen. nov., sp. nov. The type strain is JY-X040T (GDMCC 1.1996T = KCTC 49514T).

Journal of Microbiology : Journal of Microbiology
TOP