Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
49 "toxin"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review
Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells
Huiling Xu, Shengnan Wang, Xiaozhou Wang, Pu Zhang, Qi Zheng, ChangXi Qi, Xiaoting Liu, Muzi Li, Yongxia Liu, Jianzhu Liu
J. Microbiol. 2024;62(8):581-590.   Published online August 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00162-9
  • 50 View
  • 0 Download
AbstractAbstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Journal Articles
Effects of Phosphorus‑dissolving Dark Septate Endophytes on the Growth of Blueberry
Qixin Luo , Rui Hou , Xiaojing Shang , Si Li
J. Microbiol. 2023;61(9):837-851.   Published online October 5, 2023
DOI: https://doi.org/10.1007/s12275-023-00080-2
  • 47 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Dark septate endophytes (DSEs) are widely distributed and improve plant growth. DSEs secrete large amounts of enzymes to mineralize insoluble phosphorus in soil and convert it into soluble phosphorus, promoting plant uptake of phosphorus. However, the effects of DSEs with phosphate-solubilizing ability on host plants need further study. In this study, phosphorusdissolving DSEs were screened for growth-promoting effects. We isolated, identified and characterized three DSE species (Thozetella neonivea, Pezicula ericae and Hyaloscyphaceae sp.) showing phosphate-solubilizing ability. The impact of single, dual or triple inoculation of DSEs on blueberry plant characteristics was studied. Their effects on colonization intensity, seedling biomass, nutrients in plants and soil, and activities of plant resistance enzymes and soil enzymes were markedly upregulated relative to the control (P < 0.05). The available phosphorus and acid phosphatase levels in different combinations were significantly increased. These findings indicate that the application of the three DSEs may be valuable in facilitating the cultivation of blueberry with a higher biomass and improved plant quality.

Citations

Citations to this article as recorded by  
  • Diversity and Functional Roles of Root-Associated Endophytic Fungi in Two Dominant Pioneer Trees Reclaimed from a Metal Mine Slag Heap in Southwest China
    Bo Bi, Yuqing Xiao, Xiaonan Xu, Qianqian Chen, Haiyan Li, Zhiwei Zhao, Tao Li
    Microorganisms.2024; 12(10): 2067.     CrossRef
  • Short-term organic fertilizer substitution increases sorghum yield by improving soil physicochemical characteristics and regulating microbial community structure
    Mengen Nie, Guangqian Yue, Lei Wang, Yizhong Zhang
    Frontiers in Plant Science.2024;[Epub]     CrossRef
Rasiella rasia gen. nov. sp. nov. within the family Flavobacteriaceae isolated from seawater recirculating aquaculture system
Seong-Jin Kim , Young-Sam Kim , Sang-Eon Kim , Hyun-Kyoung Jung , Jeeeun Park , Min-Ju Yu , Kyoung-Ho Kim
J. Microbiol. 2022;60(11):1070-1076.   Published online October 17, 2022
DOI: https://doi.org/10.1007/s12275-022-2099-7
  • 48 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
A novel bacterium designated RR4-40T was isolated from a biofilter of seawater recirculating aquaculture system in Busan, South Korea. Cells are strictly aerobic, Gram-negative, irregular short rod, non-motile, and oxidase- and catalase-negative. Growth was observed at 15–30°C, 0.5–6% NaCl (w/v), and pH 5.0–9.5. The strain grew optimally at 28°C, 3% salinity (w/v), and pH 8.5. The phylogenetic analysis based on 16S rRNA gene sequences showed that strain RR4-40T was most closely related to Marinirhabdus gelatinilytica NH83T (94.16% of 16S rRNA gene similarity) and formed a cluster with genera within the family Flavobacteriaceae. The values of the average nucleotide identity (ANI), digital DNA-DNA hybridization (dDDH), and average amino acid identity (AAI) between genomes of strain RR4-40T and M. gelatinilytica NH83T were 72.91, 18.2, and 76.84%, respectively, and the values against the strains in the other genera were lower than those. The major fatty acids were iso-C15:0 (31.34%), iso-C17:0 3-OH (13.65%), iso-C16:0 3-OH (10.61%), and iso-C15:1 G (10.38%). The polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, aminophospholipid, aminolipid, glycolipid, and sphingolipid. The major respiratory quinone was menaquinone-6 (MK-6) and the DNA G + C content of strain RR4-40T was 37.4 mol%. According to the polyphasic analysis, strain RR4-40T is considered to represent a novel genus within the family Flavobacteriaceae, for which the name Rasiella rasia gen. nov, sp. nov. is proposed. The type strain is RR4-40T (= KCTC 52650T = MCCC 1K04210T).

Citations

Citations to this article as recorded by  
  • Rhodobacteraceae are Prevalent and Ecologically Crucial Bacterial Members in Marine Biofloc Aquaculture
    Meora Rajeev, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(11): 985.     CrossRef
  • Validation List no. 215. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642
Eunsil Choi , Ahhyun Huh , Changmin Oh , Jeong-Il Oh , Ho Young Kang , Jihwan Hwang
J. Microbiol. 2022;60(2):192-206.   Published online February 1, 2022
DOI: https://doi.org/10.1007/s12275-022-1619-9
  • 52 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.

Citations

Citations to this article as recorded by  
  • Evaluating the Contribution of the Predicted Toxin–Antitoxin System HigBA to Persistence, Biofilm Formation, and Virulence in Burkholderia pseudomallei
    Itziar Chapartegui-González, Nittaya Khakhum, Jacob L. Stockton, Alfredo G. Torres, Igor E. Brodsky
    Infection and Immunity.2022;[Epub]     CrossRef
  • Chronicle of Research into Lichen-Associated Bacteria
    Zichen He, Takeshi Naganuma
    Microorganisms.2022; 10(11): 2111.     CrossRef
  • Degradation of amoxicillin by newly isolated Bosea sp. Ads-6
    Lei Yan, Ning Yan, Xi-Yan Gao, Ying Liu, Zhi-Pei Liu
    Science of The Total Environment.2022; 828: 154411.     CrossRef
Whole genome and RNA sequencing of oral commensal bacterium Streptococcus anginosus subsp. anginosus with vancomycin tolerance
Kyu Hwan Kwack , Jae-Hyung Lee , Ji-Hoi Moon
J. Microbiol. 2022;60(2):167-176.   Published online January 7, 2022
DOI: https://doi.org/10.1007/s12275-022-1425-4
  • 56 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract
“Antibiotic tolerance” promotes the rapid subsequent evolution of “antibiotic resistance,” however, it is often overlooked because it is difficult to distinguish between tolerant and susceptible organisms. A commensal bacterium S. anginosus subsp. anginosus strain KHUD_S1, isolated from dental biofilm was found to exhibit a high MBC/MIC ratio of 32 against vancomycin. We observed KHUD_S1 cells exposed to vancomycin did not grow but maintained viability. Transmission electron microscope showed KHUD_S1 cells possessed a dense, thick capsule and maintained the cell wall integrity upon vancomycin exposure. To infer the underlying mechanisms of the vancomycin tolerance in KHUD_S1, we performed whole genome sequencing and RNA sequencing. The KHUD_S1 genome carried three genes encoding branching enzymes that can affect peptidoglycan structure through interpeptide bridge formation. Global gene expression profiling revealed that the vancomycin-induced downregulation of carbohydrate and inorganic ion transport/metabolism as well as translation is less prominent in KHUD_S1 than in the vancomycin susceptible strain KHUD_S3. Based on the transcriptional levels of genes related to peptidoglycan synthesis, KHUD_S1 was determined to have a 3D peptidoglycan architecture distinct from KHUD_S3. It was found that, under vancomycin exposure, the peptidoglycan was remodeled through changes in the interpeptide bridge and transpeptidation reactions. Collectively, these features of S. anginosus KHUD_S1, including a dense capsule and differential gene expression in peptidoglycan synthesis, may contribute to vancomycin tolerance. Our results showing the occurrence of vancomycin tolerance amongst oral commensal bacteria highlight the need for considering future strategies for screening of antibiotic tolerance as an effort to reduce antibiotic resistance.

Citations

Citations to this article as recorded by  
  • Gut resistome profiling reveals high diversity and fluctuations in pancreatic cancer cohorts
    Xudong Liu, Kexin Li, Yun Yang, Dingyan Cao, Xinjie Xu, Zilong He, Wenming Wu
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • The Sexome ‐ A proof of concept study into microbial transfer between heterosexual couples after sexual intercourse
    Ruby Dixon, Siobhon Egan, Sheree Hughes, Brendan Chapman
    Forensic Science International.2023; 348: 111711.     CrossRef
Lactiplantibacillus plantarum LRCC5314 includes a gene for serotonin biosynthesis via the tryptophan metabolic pathway
Jiseon Jeong , Yunjeong Lee , Seokmin Yoon , Jong-Hwa Kim , Wonyong Kim
J. Microbiol. 2021;59(12):1092-1103.   Published online December 4, 2021
DOI: https://doi.org/10.1007/s12275-021-1472-2
  • 53 View
  • 0 Download
  • 8 Web of Science
  • 5 Crossref
AbstractAbstract
As the functions of probiotics within the same species may not be shared, it is important to analyze the genetic characteristics of strains to determine their safety and usefulness before industrial applications. Hence the present study was undertaken to determine functional genes, and beneficial activities of strain LRCC5314, a bacterial strain isolated from kimchi through comparative genomic analysis. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain LRCC5314 was a member of the species L. plantarum. Whole genome size of strain LRCC5314 was sequence was 3.25 Mb long, with a G + C content of 44.5 mol% and 3,031 predicted genes. Strain LRCC5314 could metabolize hexoses through homofermentation, which produces only lactic acid from hexoses. According to gene annotation, strain LRCC- 5314 contained genes of EPS production and CRISPR. Moreover, the strain contained genes that could encode a complete biosynthetic pathway for the production of tryptophan, which can be used as a precursor of serotonin. Notably, the tryptophan and serotonin activities strain LRCC5314 were higher than those of reference strains, L. plantarum ATCC 14917T, DSM 20246, DSM 2601, and ATCC 8014, which reach tryptophan amount of 0.784 ± 0.045 μM/ml in MRS broth and serotonin concentration of 19.075 ± 0.295 ng/ml in HT-22 cells. These findings indicated that L. plantarum LRCC5314 could provide a source for serotonin production and could be used as a functional probiotic for stress regulation.

Citations

Citations to this article as recorded by  
  • Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health
    Ramya Balasubramanian, Elizabeth Schneider, Eoin Gunnigle, Paul D. Cotter, John F. Cryan
    Neuroscience & Biobehavioral Reviews.2024; 158: 105562.     CrossRef
  • Effect of postbiotic Lactiplantibacillus plantarum LRCC5314 supplemented in powdered milk on type 2 diabetes in mice
    J.-H. Kim, W. Kwak, Y. Nam, J. Baek, Y. Lee, S. Yoon, W. Kim
    Journal of Dairy Science.2024; 107(8): 5301.     CrossRef
  • The role of pharmacomicrobiomics in HIV prevention, treatment, and women’s health
    Erik C. Swanson, Christopher M. Basting, Nichole R. Klatt
    Microbiome.2024;[Epub]     CrossRef
  • Whole-Genome Sequence of Lactococcus lactis Subsp. lactis LL16 Confirms Safety, Probiotic Potential, and Reveals Functional Traits
    Justina Mileriene, Jurgita Aksomaitiene, Kristina Kondrotiene, Tora Asledottir, Gerd Elisabeth Vegarud, Loreta Serniene, Mindaugas Malakauskas
    Microorganisms.2023; 11(4): 1034.     CrossRef
  • Probiotic Incorporation into Yogurt and Various Novel Yogurt-Based Products
    Douglas W. Olson, Kayanush J. Aryana
    Applied Sciences.2022; 12(24): 12607.     CrossRef
Review
Potential of Bacillus velezensis as a probiotic in animal feed: a review
Fatima Khalid , Anam Khalid , Yuechi Fu , Qian Hu , Yunfang Zheng , Salman Khan , Zaigui Wang
J. Microbiol. 2021;59(7):627-633.   Published online July 1, 2021
DOI: https://doi.org/10.1007/s12275-021-1161-1
  • 45 View
  • 0 Download
  • 62 Web of Science
  • 60 Crossref
AbstractAbstract
Bacillus velezensis is a plant growth-promoting bacterium that can also inhibit plant pathogens. However, based on its properties, it is emerging as a probiotic in animal feed. This review focuses on the potential characteristics of B. velezensis for use as a probiotic in the animal feed industry. The review was conducted by collecting recently published articles from peer-reviewed journals. Google Scholar and PubMed were used as search engines to access published literature. Based on the information obtained, the data were divided into three groups to discuss the (i) probiotic characteristics of B. velezensis, (ii) probiotic potential for fish, and (iii) the future potential of this species to be developed as a probiotic for the animal feed industry. Different strains of B. velezensis isolated from different sources were found to have the ability to produce antimicrobial compounds and have a beneficial effect on the gut microbiota, with the potential to be a candidate probiotic in the animal feed industry. This review provides valuable information about the characteristics of B. velezensis, which can provide researchers with a better understanding of the use of this species in the animal feed industry.

Citations

Citations to this article as recorded by  
  • Probiotic potential of intestinal bacteria isolated from the digestive tract of hybrid snakehead (Channa argus♀ × Channa maculata♂)
    Wen-Hao Wu, Yan-Xin Sun, Jia-Hao Zhang, Kun-Ming Huang, Xi-Chao Liu, Shu Tang, Wei Li, Biao Jiang, You-Lu Su
    Aquaculture.2025; 598: 742023.     CrossRef
  • Effect of Bacillus velezensis T23 solid-state fermentation product on growth, gut and liver health, and gut microbiota of common carp (Cyprinus carpio)
    Xingyu Chen, Shubin Liu, Tsegay Teame, Jia Luo, Yao Liu, Qingwen Zhou, Qianwen Ding, Yuanyuan Yao, Yalin Yang, Chao Ran, Zhen Zhang, Zhigang Zhou
    Aquaculture.2025; 596: 741733.     CrossRef
  • Host-associated Bacillus velezensis T20 improved disease resistance and intestinal health of juvenile turbot (Scophthalmus maximus)
    Guijuan Yu, Sifan Zhao, Weihao Ou, Qinghui Ai, Wenbing Zhang, Kangsen Mai, Yanjiao Zhang
    Aquaculture Reports.2024; 35: 101927.     CrossRef
  • Draft genome sequence of Bacillus velezensis endophytically isolated from roots of Polygala paniculata
    Felipe de Paula Nogueira Cruz, Paulo Henrique Marques de Andrade, Cristina Paiva de Sousa, Paulo Teixeira Lacava, John J. Dennehy
    Microbiology Resource Announcements.2024;[Epub]     CrossRef
  • Cellulase with Bacillus velezensis improves physicochemical characteristics, microbiota and metabolites of corn germ meal during two-stage co-fermentation
    Long Chen, Yang Guo, Xin Liu, Lin Zheng, Bingdong Wei, Zijian Zhao
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • Biocontrol manufacturing and agricultural applications of Bacillus velezensis
    Abolfazl Keshmirshekan, Leonardo M. de Souza Mesquita, Sónia P.M. Ventura
    Trends in Biotechnology.2024; 42(8): 986.     CrossRef
  • Antagonistic Strain Bacillus velezensis JZ Mediates the Biocontrol of Bacillus altitudinis m-1, a Cause of Leaf Spot Disease in Strawberry
    Li Zhang, Zirui Liu, Yilei Pu, Boyuan Zhang, Boshen Wang, Linman Xing, Yuting Li, Yingjun Zhang, Rong Gu, Feng Jia, Chengwei Li, Na Liu
    International Journal of Molecular Sciences.2024; 25(16): 8872.     CrossRef
  • Effects of dietary supplementation with Bacillus velezensis on the growth performance, body composition, antioxidant, immune-related gene expression, and histology of Pacific white shrimp, Litopenaeus vannamei
    Arwa E. M. Abdelsamad, Rashad E. M. Said, Mona Assas, Alkhateib Y. Gaafar, Awatef H. Hamouda, Aldoushy Mahdy
    BMC Veterinary Research.2024;[Epub]     CrossRef
  • Subchronic oral toxicity assessment of Bacillus velezensis strain BV379 in sprague-dawley rats
    Mark R. Bauter, Laura M. Brutscher, Laurie C. Dolan, Jessica L. Spears
    Human & Experimental Toxicology.2024;[Epub]     CrossRef
  • Bacillus spp. as potential probiotics: promoting piglet growth by improving intestinal health
    Xiaopeng Tang, Yan Zeng, Kangning Xiong, Jinfeng Zhong
    Frontiers in Veterinary Science.2024;[Epub]     CrossRef
  • Bacillus velezensis CL197: a zearalenone detoxifying strain isolated from wheat with potential to be used in animal production
    Paloma Bianca Orso, Alberto Gonçalves Evangelista, Tiago de Melo Nazareth, Carlos Luz, Keliani Bordin, Giuseppe Meca, Fernando Bittencourt Luciano
    Veterinary Research Communications.2024; 48(6): 3847.     CrossRef
  • Screening and identification of probiotics from the intestinal tract of largemouth bass (Micropterus salmoides) for use as a feed additive and bacterial infection control
    Lu Xia, Gaofeng Cheng, Pan Wang, Xinyou Wang, Zhaoran Dong, Qingjiang Mu, Jiaqian Yu, Zhihao Jiang, Jun Xiao, Hao Feng, Xiangping Li, Weiguang Kong, Zhen Xu
    Aquaculture.2024; 584: 740661.     CrossRef
  • Optimization of Bacillus velezensis S26 sporulation for enhanced biocontrol of gray mold and anthracnose in postharvest strawberries
    Alessandra Russi, Camille Eichelberger Granada, Joséli Schwambach
    Postharvest Biology and Technology.2024; 210: 112737.     CrossRef
  • The Probiotic Potential and Metabolite Characterization of Bioprotective Bacillus and Streptomyces for Applications in Animal Production
    Alberto Gonçalves Evangelista, Tiago de Melo Nazareth, Carlos Luz, Victor Dopazo, Ana Moreno, Mario Riolo, Giuseppe Meca, Fernando Bittencourt Luciano
    Animals.2024; 14(3): 388.     CrossRef
  • Targeted Screening of Fiber Degrading Bacteria with Probiotic Function in Herbivore Feces
    Benhao Chen, Yan Zeng, Jie Wang, Mingxia Lei, Baoxing Gan, Zhiqiang Wan, Liqian Wu, Guangrong Luo, Suizhong Cao, Tianwu An, Qibin Zhang, Kangcheng Pan, Bo Jing, Xueqin Ni, Dong Zeng
    Probiotics and Antimicrobial Proteins.2024;[Epub]     CrossRef
  • Bacillus velezensis promotes the proliferation of lactic acid bacteria and influences the fermentation quality of whole-plant corn silage
    Yili Wang, Gangqing Ying, Zimo Zhang, Yu Tang, Yunhua Zhang, Lijuan Chen
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Pig-Derived Probiotic Bacillus tequilensis YB-2 Alleviates Intestinal Inflammation and Intestinal Barrier Damage in Colitis Mice by Suppressing the TLR4/NF-κB Signaling Pathway
    Heng Yin, Chengbi Wang, Yi Shuai, Zhuoya Xie, Jingbo Liu
    Animals.2024; 14(13): 1989.     CrossRef
  • Genetic and Phenotypic Characterization of Bacillus velezensis Strain BV379 for Human Probiotic Applications
    Laura M. Brutscher, Sebhat Gebrechristos, Sean M. Garvey, Jessica L. Spears
    Microorganisms.2024; 12(3): 436.     CrossRef
  • Effects of Tibetan Sheep–Derived Compound Probiotics on Growth Performance, Immune Function, Intestinal Tissue Morphology, and Intestinal Microbiota in Mice
    Zifeng Gong, Guisheng Ye, Xi He, Xiaolong He
    Probiotics and Antimicrobial Proteins.2024;[Epub]     CrossRef
  • Exploring the protective role of Bacillus velezensis BV1704–Y in zebrafish health and disease resistance against Aeromonas hydrophila infection
    Xiaozhou Qi, Fei Luo, Yilin Zhang, Gaoxue Wang, Fei Ling
    Fish & Shellfish Immunology.2024; 152: 109789.     CrossRef
  • Whole genome analysis, detoxification of ochratoxin a and physiological characterization of a novel Bacillus velezensis MM35 isolated from soil
    Fengru Xu, Mengmeng Tang, Zhihao Yang, Chengshui Liao, Zuhua Yu, Rongxian Guo, Ke Shang, Songbiao Chen, Ke Yang, Jing Li, Ke Ding, Yanyan Jia
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • A Novel Bacillus amyloliquefaciens Specifically Improving the Solubility and Antioxidant Activities of Edible Bird’s Nest
    Xin-Lin Li, Jian-Mei Lian, Xiao-Ling Chen, Qun-Yan Fan, Ying Yan, Feng-Jie Cui
    Current Microbiology.2024;[Epub]     CrossRef
  • Growth promotion on maize and whole-genome sequence analysis of Bacillus velezensis D103
    Yating Zhang, Ning Zhang, Xinyue Bi, Tong Bi, Faryal Babar Baloch, Jianjia Miao, Nan Zeng, Bingxue Li, Yingfeng An, Feng Gao
    Microbiology Spectrum.2024;[Epub]     CrossRef
  • A New Bacillus velezensis Strain CML532 Improves Chicken Growth Performance and Reduces Intestinal Clostridium perfringens Colonization
    A La Teng Zhu La, Qiu Wen, Yuxuan Xiao, Die Hu, Dan Liu, Yuming Guo, Yongfei Hu
    Microorganisms.2024; 12(4): 771.     CrossRef
  • Whole-Genome Sequencing And Characterization Of Two Bacillus velezensis Strains from Termitarium and A Comprehensive Comparative Genomic Analysis of Biosynthetic Gene Clusters
    Venkatesan Dhanalakshmi, Jeyaprakash Rajendhran
    Current Microbiology.2024;[Epub]     CrossRef
  • Dietary Bacillus velezensis T23 fermented products supplementation improves growth, hepatopancreas and intestine health of Litopenaeus vannamei
    Hongwei Yang, Dongdong Du, Qingshuang Zhang, Tsegay Teame, Anran Wang, Qiang Hao, Shubin Liu, Qianwen Ding, Yuanyuan Yao, Yalin Yang, Chao Ran, Shengkang Li, Zhen Zhang, Zhigang Zhou
    Fish & Shellfish Immunology.2024; 149: 109595.     CrossRef
  • Bacillus subtilis RBT-7/32 and Bacillus licheniformis RBT-11/17 as New Promising Strains for Use in Probiotic Feed Additives
    Vera Yaderets, Nataliya Karpova, Elena Glagoleva, Alexandra Shibaeva, Vakhtang Dzhavakhiya
    Microorganisms.2023; 11(11): 2729.     CrossRef
  • Cervicovaginal Bacillus velezensis Isolate: A Potential Probiotic and an Antagonist Against Candida and Staphylococcus
    Gulcan Sahal, Hanife Guler Donmez, Mehmet Sinan Beksac
    Current Microbiology.2023;[Epub]     CrossRef
  • Cellulolytic Bacillus Strain: Production Optimization Using Wheat Bran under Solid-State Fermentation and Investigation of Its Probiotic Potential
    Taroub Bouzaiene, Manel Ziadi, Malek Enneifer, Abir Sellami, Abdelkarim Aydi, Ameur Cherif, Moktar Hamdi
    Sustainability.2023; 15(10): 8394.     CrossRef
  • Efficient control of the fungal pathogens Colletotrichum gloeosporioides and Penicillium digitatum infecting citrus fruits by native soilborne Bacillus velezensis strains
    Tao Xuan Vu, Tram Bao Tran, Minh Binh Tran, Trang Thi Kim Do, Linh Mai Do, Mui Thi Dinh, Hanh-Dung Thai, Duc-Ngoc Pham, Van-Tuan Tran
    Heliyon.2023; 9(2): e13663.     CrossRef
  • Exploring a new technology for producing better-flavored HongJun Tofu, a traditional Neurospora-type okara food
    Yuanxin Qiu, Cungang Li, Min Xia, Hao Dong, Hairu Yuan, Shuangling Ye, Qun Wang
    LWT.2023; 180: 114700.     CrossRef
  • Riverine pollution influences the intraspecific variation in the gut microbiome of an invasive fish, Cyprinus carpio (Linn., 1758)
    Meghali Bharti, Shekhar Nagar, Ram Krishan Negi
    3 Biotech.2023;[Epub]     CrossRef
  • Whole-Genome Analysis of Termite-Derived Bacillus velezensis BV-10 and Its Application in King Grass Silage
    Xingbo Zhang, Xiaotao He, Jieru Chen, Jingtao Li, Yuhui Wu, Yu Chen, Yuhui Yang
    Microorganisms.2023; 11(11): 2697.     CrossRef
  • Butyl succinate-mediated control of Bacillus velezensis  ce 100 for apple anthracnose caused by Colletotrichum gloeosporioides
    Seo Hyun Hwang, Chaw Ei Htwe Maung, Jun Su Noh, Jeong-Yong Cho, Kil Yong Kim
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Nanopore Sequencing Discloses Compositional Quality of Commercial Probiotic Feed Supplements
    Worarat Kruasuwan, Piroon Jenjaroenpun, Tantip Arigul, Nipa Chokesajjawatee, Pimlapas Leekitcharoenphon, Suporn Foongladda, Thidathip Wongsurawat
    Scientific Reports.2023;[Epub]     CrossRef
  • Phenotypic characterization and genome analysis reveal the probiotic potential of a banyan endophyteBacillus velezensisK1
    Riteshri Soni, Hareshkumar Keharia, Krina Shah, Neeraj Jain
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Complete genome analysis of Bacillus velezensis TS5 and its potential as a probiotic strain in mice
    Benhao Chen, Yi Zhou, Lixiao Duan, Xuemei Gong, Xingmei Liu, Kangcheng Pan, Dong Zeng, Xueqin Ni, Yan Zeng
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Comparative genomic and transcriptome analysis of Bacillus velezensis CL-4 fermented corn germ meal
    Long Chen, Zihui Qu, Wei Yu, Lin Zheng, Haixin Qiao, Dan Wang, Bingdong Wei, Zijian Zhao
    AMB Express.2023;[Epub]     CrossRef
  • Dietary Bacillus velezensis R-71003 and sodium gluconate improve antioxidant capacity, immune response and resistance against Aeromonas hydrophila in common carp
    Lili Yun, Meiru Kang, Yihao Shen, Junchang Feng, Guokun Yang, Jianxin Zhang, Xiaolin Meng, Xulu Chang
    Fish & Shellfish Immunology.2023; 139: 108921.     CrossRef
  • Synbiotic Agents and Their Active Components for Sustainable Aquaculture: Concepts, Action Mechanisms, and Applications
    Vijayaram Srirengaraj, Hary L. Razafindralambo, Holy N. Rabetafika, Huu-Thanh Nguyen, Yun-Zhang Sun
    Biology.2023; 12(12): 1498.     CrossRef
  • Isolation and Screening of Antagonistic Endophytes against Phytophthora infestans and Preliminary Exploration on Anti-oomycete Mechanism of Bacillus velezensis 6-5
    Jiaomei Zhang, Xiaoqing Huang, Yuqin Hou, Xiangning Xia, Zhiming Zhu, Airong Huang, Shun Feng, Peihua Li, Lei Shi, Pan Dong
    Plants.2023; 12(4): 909.     CrossRef
  • Animal Microbiomes as a Source of Novel Antibiotic-Producing Strains
    Margarita N. Baranova, Ekaterina A. Pilipenko, Alexander G. Gabibov, Stanislav S. Terekhov, Ivan V. Smirnov
    International Journal of Molecular Sciences.2023; 25(1): 537.     CrossRef
  • Probiotic potential of Bacillus Isolates from Polish Bee Pollen and Bee Bread
    Karolina Pełka, Ahmer Bin Hafeez, Randy W. Worobo, Piotr Szweda
    Probiotics and Antimicrobial Proteins.2023;[Epub]     CrossRef
  • Identification of a Novel Bacillus velezensis IS-6 Nudix Hydrolase Nh-9 Involved in Ochratoxin A Detoxification by Transcriptomic Profiling and Functional Verification
    Israt Jahan, Bowen Tai, Junning Ma, Sarfaraz Hussain, Haolan Du, Ling Guo, Gang Wang, Tosin Victor Adegoke, Longxue Ma, Fuguo Xing
    Journal of Agricultural and Food Chemistry.2023; 71(26): 10155.     CrossRef
  • Potential Probiotic Acceptability of a Novel Strain of Paenibacillus konkukensis SK 3146 and Its Dietary Effects on Growth Performance, Intestinal Microbiota, and Meat Quality in Broilers
    Seung-Gyu Moon, Damini Kothari, Woo-Do Lee, Jong-Il Kim, Kyung-Il Kim, Yong-Gi Kim, Gun-Whi Ga, Eun-Jip Kim, Soo-Ki Kim
    Animals.2022; 12(11): 1471.     CrossRef
  • Antibacterial Activity of Two Metabolites Isolated From Endophytic Bacteria Bacillus velezensis Ea73 in Ageratina adenophora
    Zhihua Ren, Lei Xie, Samuel Kumi Okyere, Juan Wen, Yinan Ran, Xiang Nong, Yanchun Hu
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation
    Panwen Zhang, Hao Li, Wenpeng Zhao, Kai Xiong, He Wen, Huilin Yang, Xiaolan Wang
    Food Research International.2022; 153: 110932.     CrossRef
  • Metagenomic insights to understand the role of polluted river Yamuna in shaping the gut microbial communities of two invasive fish species
    Meghali Bharti, Shekhar Nagar, Himani Khurana, Ram Krishan Negi
    Archives of Microbiology.2022;[Epub]     CrossRef
  • Bacillus velezensis MT9 and Pseudomonas chlororaphis MT5 as biocontrol agents against citrus sooty mold and associated insect pests
    Matteo Calcagnile, Maurizio Salvatore Tredici, Antonio Pennetta, Silvia Caterina Resta, Adelfia Talà, Giuseppe Egidio De Benedetto, Pietro Alifano
    Biological Control.2022; 176: 105091.     CrossRef
  • Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects
    Doaa S. Zaid, Shuyun Cai, Chang Hu, Ziqi Li, Youguo Li, Jeffrey A. Gralnick
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • The safety and technological properties of Bacillus velezensis DMB06 used as a starter candidate were evaluated by genome analysis
    Hong-Eun Na, Sojeong Heo, Yoon-Su Kim, Tao Kim, Gawon Lee, Jong-Hoon Lee, Do-Won Jeong
    LWT.2022; 161: 113398.     CrossRef
  • Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56
    Ngoc Tung Quach, Thi Hanh Nguyen Vu, Thi Thu An Nguyen, Hoang Ha, Phu-Ha Ho, Son Chu-Ky, Lan-Huong Nguyen, Hai Van Nguyen, Thi Thu Thuy Thanh, Ngoc Anh Nguyen, Hoang Ha Chu, Quyet-Tien Phi
    World Journal of Microbiology and Biotechnology.2022;[Epub]     CrossRef
  • Autoclaved Diet with Inactivated Spores of Bacillus spp. Decreased Reproductive Performance of Muc2−/− and Muc2+/− Mice
    Maryana V. Morozova, Galina V. Kalmykova, Nadezhda I. Akulova, Yuriy V. Ites, Valentina I. Korkina, Ekaterina A. Litvinova
    Animals.2022; 12(18): 2399.     CrossRef
  • Comparative genomics analysis of Bacillus velezensis LOH112 isolated from a nonagenarian provides insights into its biocontrol and probiotic traits
    Zhenhuang Ge, Zhiqi Kuang, Jiahao Chen, Junyi Chen, Tianhao Liu, Zhigang She, Yongjun Lu
    Gene.2022; 835: 146644.     CrossRef
  • Fermentation of NaHCO3-treated corn germ meal by Bacillus velezensis CL-4 promotes lignocellulose degradation and nutrient utilization
    Long Chen, Wanying Chen, Boyu Zheng, Wei Yu, Lin Zheng, Zihui Qu, Xiaogang Yan, Bingdong Wei, Zijian Zhao
    Applied Microbiology and Biotechnology.2022; 106(18): 6077.     CrossRef
  • Suppression of Grape White Rot Caused by Coniella vitis Using the Potential Biocontrol Agent Bacillus velezensis GSBZ09
    Xiangtian Yin, Tinggang Li, Xilong Jiang, Xiaoning Tang, Jiakui Zhang, Lifang Yuan, Yanfeng Wei
    Pathogens.2022; 11(2): 248.     CrossRef
  • Effects of Dietary Bacillus velezensis LSG2-5 on Growth, Immunity, Antioxidant Capacity, and Disease Resistance of Amur minnow (Rhynchocypris lagowskii Dybowski)
    Yurou Zhang, Mengnan Yu, Lili Lin, Jiajing Wang, Dongming Zhang, Qiuju Wang, Mahmoud M. Elsadek, Guiqin Wang, Qi Yao, Yuke Chen, Zhixin Guo, Xiangjun Leng
    Aquaculture Nutrition.2022; 2022: 1.     CrossRef
  • In Vivo Efficacy of Bacillus velezensis Isolated from Korean Gochang Bokbunja Vinegar against Carbapenem-Resistant Klebsiella pneumoniae Infections
    Fatemeh Ghorbanian, Hoonhee Seo, Hanieh Tajdozian, Youngkyoung Lee, MD Abdur Rahim, Sukyung Kim, Il-Yun Jung, Saebim Lee, Ho-Yeon Song
    Polish Journal of Microbiology.2022; 71(4): 553.     CrossRef
  • Analysis of the probiotic activity of Bacillus velezensis RT-26 strain isolated from reindeer rumen by whole-genome sequencing
    L.A. Ilina, V.A. Filippova, E.S. Ponomareva, E.A. Brazhnik, T.P. Dunyashev, K.A. Laishev, S. Eliseeva, E.A. Vatskel
    BIO Web of Conferences.2022; 48: 03002.     CrossRef
  • Antimicrobial Effects of Potential Probiotics of Bacillus spp. Isolated from Human Microbiota: In Vitro and In Silico Methods
    Alfonso Torres-Sánchez, Jesús Pardo-Cacho, Ana López-Moreno, Ángel Ruiz-Moreno, Klara Cerk, Margarita Aguilera
    Microorganisms.2021; 9(8): 1615.     CrossRef
Journal Articles
Patterns and drivers of Vibrio isolates phylogenetic diversity in the Beibu Gulf, China
Xing Chen , Hong Du , Si Chen , Xiaoli Li , Huaxian Zhao , Qiangsheng Xu , Jinli Tang , Gonglingxia Jiang , Shuqi Zou , Ke Dong , Jonathan M. Adams , Nan Li , Chengjian Jiang
J. Microbiol. 2020;58(12):998-1009.   Published online October 23, 2020
DOI: https://doi.org/10.1007/s12275-020-0293-z
  • 41 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Members of the genus Vibrio are ubiquitous in aquatic environments and can be found either in a culturable or a viable but nonculturable (VBNC) state. Despite widespread concerns as to how to define the occurrence and dynamics of Vibrio populations by culture-independent approaches, further physiological research and relevant biotechnological developments will require the isolation and cultivation of the microbes from various environments. The present work provides data and perspectives on our understanding of culturable Vibrio community structure and diversity in the Beibu Gulf. Finally, we isolated 1,037 strains of Vibrio from 45 samples and identified 18 different species. Vibrio alginolyticus, V. cyclitrophicus, V. tasmaniensis, V. brasiliensis, and V. splendidus were the dominant species that had regional distribution characteristics. The correlation between the quantitative distribution and community structure of culturable Vibrio and environmental factors varied with the Vibrio species and geographical locations. Among them, salinity, nitrogen, and phosphorus were the main factors affecting the diversity of culturable Vibrio. These results help to fill a knowledge gap on Vibrio diversity and provide data for predicting and controlling pathogenic Vibrio outbreaks in the Beibu Gulf.

Citations

Citations to this article as recorded by  
  • Environmental factors that regulate Vibrio spp. abundance and community structure in tropical waters
    Yi You Wong, Choon Weng Lee, Chui Wei Bong, Joon Hai Lim, Ching Ching Ng, Kumaran Narayanan, Edmund Ui Hang Sim, Ai-jun Wang
    Anthropocene Coasts.2024;[Epub]     CrossRef
  • Co-occurrence of chromophytic phytoplankton and the Vibrio community during Phaeocystis globosa blooms in the Beibu Gulf
    Qiangsheng Xu, Pengbin Wang, Jinghua Huangleng, Huiqi Su, Panyan Chen, Xing Chen, Huaxian Zhao, Zhenjun Kang, Jinli Tang, Gonglingxia Jiang, Zhuoting Li, Shuqi Zou, Ke Dong, Yuqing Huang, Nan Li
    Science of The Total Environment.2022; 805: 150303.     CrossRef
  • Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data
    Weiwei Zhang, Chenghua Li
    Reviews in Aquaculture.2021; 13(4): 2004.     CrossRef
Phenotypic characterization of a conserved inner membrane protein YhcB in Escherichia coli
Chul Gi Sung , Umji Choi , Chang-Ro Lee
J. Microbiol. 2020;58(7):598-605.   Published online April 22, 2020
DOI: https://doi.org/10.1007/s12275-020-0078-4
  • 53 View
  • 0 Download
  • 6 Web of Science
  • 5 Crossref
AbstractAbstract
Although bacteria have diverse membrane proteins, the function of many of them remains unknown or uncertain even in Escherichia coli. In this study, to investigate the function of hypothetical membrane proteins, genome-wide analysis of phenotypes of hypothetical membrane proteins was performed under various envelope stresses. Several genes responsible for adaptation to envelope stresses were identified. Among them, deletion of YhcB, a conserved inner membrane protein of unknown function, caused high sensitivities to various envelope stresses and increased membrane permeability, and caused growth defect under normal growth conditions. Furthermore, yhcB deletion resulted in morphological aberration, such as branched shape, and cell division defects, such as filamentous growth and the generation of chromosome- less cells. The analysis of antibiotic susceptibility showed that the yhcB mutant was highly susceptible to various anti-folate antibiotics. Notably, all phenotypes of the yhcB mutant were completely or significantly restored by YhcB without the transmembrane domain, indicating that the localization of YhcB on the inner membrane is dispensable for its function. Taken together, our results demonstrate that YhcB is involved in cell morphology and cell division in a membrane localization-independent manner.

Citations

Citations to this article as recorded by  
  • Co-ordinated assembly of the multilayered cell envelope of Gram-negative bacteria
    Elayne M Fivenson, Laurent Dubois, Thomas G Bernhardt
    Current Opinion in Microbiology.2024; 79: 102479.     CrossRef
  • Loss of YhcB results in overactive fatty acid biosynthesis
    Hannah M. Stanley, M. Stephen Trent, K. Heran Darwin
    mBio.2024;[Epub]     CrossRef
  • A New Factor LapD Is Required for the Regulation of LpxC Amounts and Lipopolysaccharide Trafficking
    Alicja Wieczorek, Anna Sendobra, Akshey Maniyeri, Magdalena Sugalska, Gracjana Klein, Satish Raina
    International Journal of Molecular Sciences.2022; 23(17): 9706.     CrossRef
  • Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth
    Emily C. A. Goodall, Georgia L. Isom, Jessica L. Rooke, Karthik Pullela, Christopher Icke, Zihao Yang, Gabriela Boelter, Alun Jones, Isabel Warner, Rochelle Da Costa, Bing Zhang, James Rae, Wee Boon Tan, Matthias Winkle, Antoine Delhaye, Eva Heinz, Jean-F
    PLOS Genetics.2021; 17(12): e1009586.     CrossRef
  • The inner membrane protein LapB is required for adaptation to cold stress in an LpxC-independent manner
    Han Byeol Lee, Si Hyoung Park, Chang-Ro Lee
    Journal of Microbiology.2021; 59(7): 666.     CrossRef
Review
MINIREVIEW] EAST1 toxin: An enigmatic molecule associated with sporadic episodes of diarrhea in humans and animals
J. Daniel Dubreuil
J. Microbiol. 2019;57(7):541-549.   Published online June 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8651-4
  • 44 View
  • 0 Download
  • 20 Web of Science
  • 19 Crossref
AbstractAbstract
EAST1 is produced by a subset of enteroaggregative Escherichia coli strains. This toxin is a 38-amino acid peptide of 4100 Da. It shares 50% homology with the enterotoxic domain of STa and interacts with the same receptor. The mechanism of action of EAST1is proposed to be identical to that of STa eliciting a cGMP increase. EAST1 is associated with diarrheal disease in Man and various animal species including cattle and swine. Nevertheless, as EAST1-positive strains as well as culture supernatants did not provoke unequivocally diarrhea either in animal models or in human volunteers, the role of this toxin in disease is today still debated. This review intent is to examine the role of EAST1 toxin in diarrheal illnesses.

Citations

Citations to this article as recorded by  
  • Virulence and Antimicrobial Resistance Profiles of Shiga Toxin-Producing Escherichia coli from River Water and Farm Animal Feces near an Agricultural Region in Northwestern Mexico
    Bianca A. Amézquita-López, Marcela Soto-Beltrán, Bertram G. Lee, Edgar F. Bon-Haro, Ofelia Y. Lugo-Melchor, Beatriz Quiñones
    Microbiology Research.2024; 15(1): 385.     CrossRef
  • Survey in ruminants from Rwanda revealed high diversity and prevalence of extended-spectrum cephalosporin-resistant Enterobacterales
    Emmanuel Irimaso, Helga Keinprecht, Michael P. Szostak, Adriana Cabal Rosel, Beatrix Stessl, Amelie Desvars-Larrive, Christophe Ntakirutimana, Otto W. Fischer, Thomas Wittek, Elke Müller, Andrea T. Feßler, Sascha D. Braun, Stefan Schwarz, Stefan Monecke,
    BMC Veterinary Research.2024;[Epub]     CrossRef
  • The genetic potential of toxigenic Escherichia coli isolated from calves and piglets
    Aleksandr Tischenko, Andrey Koschaev, Aleksandr Valerievich Milovanov, Anastasiya Vasil'evna Elisyutikova, Vladimir Ivanovich Terehov, Tat'yana Vyacheslavovna Malysheva
    Agrarian Bulletin of the.2024; 24(08): 1071.     CrossRef
  • Characterisation of ESBL/AmpC-Producing Enterobacteriaceae isolated from poultry farms in Peninsular Malaysia
    Hui-Shee Tan, Pan Yan, Hollysia Alda Agustie, Hwei-San Loh, Nabin Rayamajhi, Chee-Mun Fang
    Letters in Applied Microbiology.2023;[Epub]     CrossRef
  • Genomic traits of multidrug resistant enterotoxigenic Escherichia coli isolates from diarrheic pigs
    Jiameng Hu, Junlin Li, Xiaobo Huang, Jing Xia, Min Cui, Yong Huang, Yiping Wen, Yue Xie, Qin Zhao, Sanjie Cao, Likou Zou, Xinfeng Han
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • An exploration of alginate oligosaccharides modulating intestinal inflammatory networks via gut microbiota
    Zhikai Zhang, Xuejiang Wang, Feng Li
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm
    Shaopeng Wu, Lulu Cui, Yu Han, Fang Lin, Jiaqi Huang, Mengze Song, Zouran Lan, Shuhong Sun
    Microorganisms.2023; 11(12): 2939.     CrossRef
  • Genome-Based Assessment of Antimicrobial Resistance and Virulence Potential of Isolates of Non-Pullorum/Gallinarum Salmonella Serovars Recovered from Dead Poultry in China
    Yan Li, Xiamei Kang, Abdelaziz Ed-Dra, Xiao Zhou, Chenghao Jia, Anja Müller, Yuqing Liu, Corinna Kehrenberg, Min Yue, Sandeep Tamber
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Virulence Characteristics, Antibiotic Resistance Patterns and Molecular Typing of Enteropathogenic Producing Escherichia coli (EPEC) Isolates in Eastern Province of Saudi Arabia: 2013–2014
    Lamya Zohair Yamani, Nasreldin Elhadi
    Infection and Drug Resistance.2022; Volume 15: 6763.     CrossRef
  • Genomic Analysis of a Highly Virulent NDM-1-Producing Escherichia coli ST162 Infecting a Pygmy Sperm Whale (Kogia breviceps) in South America
    Fábio P. Sellera, Brenda Cardoso, Danny Fuentes-Castillo, Fernanda Esposito, Elder Sano, Herrison Fontana, Bruna Fuga, Daphne W. Goldberg, Lourdes A. V. Seabra, Marzia Antonelli, Sandro Sandri, Cristiane K. M. Kolesnikovas, Nilton Lincopan
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Identification and Genomic Characterization of Escherichia albertii in Migratory Birds from Poyang Lake, China
    Qian Liu, Xiangning Bai, Xi Yang, Guoyin Fan, Kui Wu, Wentao Song, Hui Sun, Shengen Chen, Haiying Chen, Yanwen Xiong
    Pathogens.2022; 12(1): 9.     CrossRef
  • Prevalence of virulence genes among Escherichia coli strains isolated from food and carcass swabs of different animal origins in Croatia
    Dora Stojević, Andrea Humski, Marina Mikulić, Vesna Dobranić, Irena Reil, Sanja Duvnjak, Miroslav Benić, Relja Beck, Željko Cvetnić
    Journal of Veterinary Research.2022; 66(3): 395.     CrossRef
  • Characterization of virulence determinants and phylogenetic background of multiple and extensively drug resistant Escherichia coli isolated from different clinical sources in Egypt
    Rana El-baz, Heba Shehta Said, Eman Salama Abdelmegeed, Rasha Barwa
    Applied Microbiology and Biotechnology.2022; 106(3): 1279.     CrossRef
  • Prevalence and Characterization of Quinolone-Resistance Determinants in Escherichia coli Isolated from Food-Producing Animals and Animal-Derived Food in the Philippines
    Lawrence Belotindos, Marvin Villanueva, Joel Miguel, Precious Bwalya, Tetsuya Harada, Ryuji Kawahara, Chie Nakajima, Claro Mingala, Yasuhiko Suzuki
    Antibiotics.2021; 10(4): 413.     CrossRef
  • Potential Zoonotic Pathovars of Diarrheagenic Escherichia coli Detected in Lambs for Human Consumption from Tierra del Fuego, Argentina
    Ximena Blanco Crivelli, María Paz Bonino, Mariana Soledad Sanin, Juan Facundo Petrina, Vilma Noelia Disalvo, Rosana Massa, Elizabeth Miliwebsky, Armando Navarro, Isabel Chinen, Adriana Bentancor
    Microorganisms.2021; 9(8): 1710.     CrossRef
  • Post-weaning diarrhea in pigs weaned without medicinal zinc: risk factors, pathogen dynamics, and association to growth rate
    Esben Østergaard Eriksen, Egle Kudirkiene, Anja Ejlersgård Christensen, Marianne Viuf Agerlin, Nicolai Rosager Weber, Ane Nødtvedt, Jens Peter Nielsen, Katrine Top Hartmann, Lotte Skade, Lars Erik Larsen, Karen Pankoke, John Elmerdahl Olsen, Henrik Elvang
    Porcine Health Management.2021;[Epub]     CrossRef
  • Pig vaccination strategies based on enterotoxigenic Escherichia coli toxins
    J. Daniel Dubreuil
    Brazilian Journal of Microbiology.2021; 52(4): 2499.     CrossRef
  • Characterization of E. coli Isolates Producing Extended Spectrum Beta-Lactamase SHV-Variants from the Food Chain in Germany
    Alexandra Irrgang, Ge Zhao, Katharina Juraschek, Annemarie Kaesbohrer, Jens A. Hammerl
    Microorganisms.2021; 9(9): 1926.     CrossRef
  • Genomic data reveal international lineages of critical priority Escherichia coli harbouring wide resistome in Andean condors (Vultur gryphus Linnaeus, 1758)
    Danny Fuentes‐Castillo, Fernanda Esposito, Brenda Cardoso, Gislaine Dalazen, Quézia Moura, Bruna Fuga, Herrison Fontana, Louise Cerdeira, Milena Dropa, Jürgen Rottmann, Daniel González‐Acuña, José L. Catão‐Dias, Nilton Lincopan
    Molecular Ecology.2020; 29(10): 1919.     CrossRef
Journal Articles
Cyanobacterial biodiversity of semiarid public drinking water supply reservoirs assessed via next-generation DNA sequencing technology
Adriana Sturion Lorenzi , Mathias Ahii Chia , Fabyano Alvares Cardoso Lopes , Genivaldo Gueiros Z. Silva , Robert A. Edwards , Maria do Carmo Bittencourt-Oliveira
J. Microbiol. 2019;57(6):450-460.   Published online May 27, 2019
DOI: https://doi.org/10.1007/s12275-019-8349-7
  • 42 View
  • 0 Download
  • 14 Web of Science
  • 12 Crossref
AbstractAbstract
Next-generation DNA sequencing technology was applied to generate molecular data from semiarid reservoirs during well-defined seasons. Target sequences of 16S-23S rRNA ITS and cpcBA-IGS were used to reveal the taxonomic groups of cyanobacteria present in the samples, and genes coding for cyanotoxins such as microcystins (mcyE), saxitoxins (sxtA), and cylindrospermopsins (cyrJ) were investigated. The presence of saxitoxins in the environmental samples was evaluated using ELISA kit. Taxonomic analyses of high-throughput DNA sequencing data showed the dominance of the genus Microcystis in Mundaú reservoir. Furthermore, it was the most abundant genus in the dry season in Ingazeira reservoir. In the rainy season, 16S-23S rRNA ITS analysis revealed that Cylindrospermopsis raciborskii comprised 46.8% of the cyanobacterial community in Ingazeira reservoir, while the cpcBAIGS region revealed that C. raciborskii (31.8%) was the most abundant taxon followed by Sphaerospermopsis aphanizomenoides (17.3%) and Planktothrix zahidii (16.6%). Despite the presence of other potential toxin-producing genera, the detected sxtA gene belonged to C. raciborskii, while the mcyE gene belonged to Microcystis in both reservoirs. The detected mcyE gene had good correlation with MC content, while the amplification of the sxtA gene was related to the presence of STX. The cyrJ gene was not detected in these samples. Using DNA analyses, our results showed that the cyanobacterial composition of Mundaú reservoir was similar in successive dry seasons, and it varied between seasons in Ingazeira reservoir. In addition, our data suggest that some biases of analysis influenced the cyanobacterial communities seen in the NGS output of Ingazeira reservoir.

Citations

Citations to this article as recorded by  
  • Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems
    Vajagathali Mohammed, Jesu Arockiaraj
    Science of The Total Environment.2024; 924: 171644.     CrossRef
  • Correlations Between Spatiotemporal Variations in Phytoplankton Community Structure and Physicochemical Parameters in the Seungchon and Juksan Weirs
    Hyeonsu Chung, Misun Son, Taesung Kim, Jonghwan Park, Won-Seok Lee
    Water.2024; 16(20): 2976.     CrossRef
  • Comparison of the phytoplankton community compositions between the temperate reservoir and the downstream river areas of the Han River, Korea
    Yeon-Su Lee, Taehee Kim, Buhari Lawan Muhammad, Jang-Seu Ki
    Journal of Freshwater Ecology.2023;[Epub]     CrossRef
  • Assessing Freshwater Microbiomes from Different Storage Sources in the Caribbean Using DNA Metabarcoding
    Joseph Cross, Prasanna Honnavar, Xegfred Quidet, Travis Butler, Aparna Shivaprasad, Linroy Christian
    Microorganisms.2023; 11(12): 2945.     CrossRef
  • Unbiased analyses of ITS folding motifs in a taxonomically confusing lineage: Anagnostidinema visiae sp. nov. (cyanobacteria)
    Callahan A. McGovern, Alyson R. Norwich, Aimee L. Thomas, Sarah E. Hamsher, Bopaiah A. Biddanda, Anthony D. Weinke, Dale A. Casamatta
    Journal of Phycology.2023; 59(3): 619.     CrossRef
  • Subacute and sublethal ingestion of microcystin-LR impairs lung mitochondrial function by an oligomycin-like effect
    Flávia Muniz de Mesquita, Dahienne Ferreira de Oliveira, Dayene de Assis Fernandes Caldeira, João Paulo Cavalcante de Albuquerque, Leonardo Matta, Caroline Coelho de Faria, Itanna Isis Araujo de Souza, Christina Maeda Takiya, Rodrigo Soares Fortunato, Jos
    Environmental Toxicology and Pharmacology.2022; 93: 103887.     CrossRef
  • Characterization of Bacterial Communities from the Surface and Adjacent Bottom Layers of Water in the Billings Reservoir
    Marta Angela Marcondes, Andrezza Nascimento, Rodrigo Pessôa, Jefferson Russo Victor, Alberto José da Silva Duarte, Patricia Bianca Clissa, Sabri Saeed Sanabani
    Life.2022; 12(8): 1280.     CrossRef
  • Scarus spinus, crustose coralline algae and cyanobacteria: an example of dietary specialization in the parrotfishes
    Georgina M. Nicholson, Kendall D. Clements
    Coral Reefs.2022; 41(5): 1465.     CrossRef
  • Shotgun metagenomic sequencing reveals the full taxonomic, trophic, and functional diversity of a coral reef benthic cyanobacterial mat from Bonaire, Caribbean Netherlands
    Ethan C. Cissell, Sophie J. McCoy
    Science of The Total Environment.2021; 755: 142719.     CrossRef
  • Disentangling the drivers of Microcystis decomposition: Metabolic profile and co-occurrence of bacterial community
    Shengnan Chen, Miaomiao Yan, Tinglin Huang, Hui Zhang, Kaiwen Liu, Xin Huang, Nan Li, Yutian Miao, Raju Sekar
    Science of The Total Environment.2020; 739: 140062.     CrossRef
  • Effect of acute exposure of saxitoxin on development of zebrafish embryos (Danio rerio)
    Guoliang Chen, Zimu Jia, Linping Wang, Tingzhang Hu
    Environmental Research.2020; 185: 109432.     CrossRef
  • The presence of microcystins in the coastal waters of Nigeria, from the Bights of Bonny and Benin, Gulf of Guinea
    Medina O Kadiri, Solomon Isagba, Jeffrey U Ogbebor, Osasere A. Omoruyi, Timothy E. Unusiotame-Owolagba, Adriana Sturion Lorenzi, Maria do Carmo Bittencourt-Oliveira, Mathias Ahii Chia
    Environmental Science and Pollution Research.2020; 27(28): 35284.     CrossRef
Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production
Mingguan Yang , Laifeng Lu , Jing Pang , Yiling Hu , Qingbin Guo , Zhenjing Li , Shufen Wu , Huanhuan Liu , Changlu Wang
J. Microbiol. 2019;57(5):396-404.   Published online May 6, 2019
DOI: https://doi.org/10.1007/s12275-019-8517-9
  • 48 View
  • 0 Download
  • 42 Web of Science
  • 42 Crossref
AbstractAbstract
Aspergillus flavus is a saprophytic fungus that contaminates crops with carcinogenic aflatoxin. In the present work, the antifungal effects of volatile organic compounds (VOCs) from Streptomyces alboflavus TD-1 against A. flavus were investigated. VOCs from 8-day-old wheat bran culture of S. alboflavus TD-1 displayed strong inhibitory effects against mycelial growth, sporulation, and conidial germination of A. flavus. Severely misshapen conidia and hyphae of A. flavus were observed by scanning electron microscopy after exposure to VOCs for 6 and 12 h, respectively. Rhodamine 123 staining of mitochondria indicated that mitochondria may be a legitimate antifungal target of the VOCs from S. alboflavus TD-1. Furthermore, the VOCs effectively inhibited aflatoxin B1 production by downregulating genes involved in aflatoxin biosynthesis. Dimethyl trisulfide and benzenamine may play important roles in the suppression of A. flavus growth and production of aflatoxin. The results indicate that VOCs from S. alboflavus TD-1 have tremendous potential to be developed as a useful bio-pesticide for controlling A. flavus.

Citations

Citations to this article as recorded by  
  • Streptomyces Strains and Their Metabolites for Biocontrol of Phytopathogens in Agriculture
    Mingxuan Wang, Honglin Li, Jing Li, Wujin Zhang, Jianguo Zhang
    Journal of Agricultural and Food Chemistry.2024; 72(4): 2077.     CrossRef
  • Exploring soil microbiota and their role in plant growth, stress tolerance, disease control and nutrient immobilizer
    Divya Kapoor, Pankaj Sharma, Mayur Mukut Murlidhar Sharma, Sheetal Yadav, Azamal Husen
    Biocatalysis and Agricultural Biotechnology.2024; 61: 103358.     CrossRef
  • A potential biocontrol and growth-promoting agent Streptomyces luteoverticillatus B4 for managing cabbage Fusarium wilt and cucumber Alternaria leaf blight
    Yuxin Li, Gang Wang, Tianxi Rao, Ying Chen, Xiangyu Tan, Erfeng Li
    Physiological and Molecular Plant Pathology.2024; 134: 102440.     CrossRef
  • Mitigating fungal contamination of cereals: The efficacy of microplasma-based far-UVC lamps against Aspergillus flavus and Fusarium graminearum
    Zhenhui Jin, Yi-Cheng Wang
    Food Research International.2024; 190: 114550.     CrossRef
  • Suppression of Thielaviopsis ethacetica wilt and root rot, the emerging pathogen on bell pepper (Capsicum annuum), and plant growth promotion properties by the safety indigenous Streptomyces SBcT04
    Loan Le-Thi, Kim-Diep Tran, Hoai-Hieu Vo, Tu Nguyen-Van, Tam Nguyen-Thi, Anh-Truc Nong-Thi, Ngoc-Duong Vu, Nha-Hoa Phan
    Physiological and Molecular Plant Pathology.2024; 134: 102464.     CrossRef
  • Streptomyces strains inhibit the growth of Fusarium kuroshium and Fusarium solani and promote the growth of Arabidopsis thaliana
    María Fernanda Ruiz-Cisneros, José de Jesús Ornelas-Paz, Daniel Alonso Pérez-Corral, Guadalupe Isela Olivas-Orozco, David Ignacio Berlanga-Reyes, Octavio Jhonathan Cambero-Campos, Mario Orlando Estrada-Virgen, Salvador Ordaz-Silva, Miguel Ángel Salas-Mari
    Biocontrol Science and Technology.2024; 34(5): 469.     CrossRef
  • Fumigation with dimethyl trisulfide to inhibit Aspergillus flavus growth, aflatoxin B1 production and virulence
    Mingguan Yang, Honggui Lu, Nan Xiao, Yongjian Qin, Lei Sun, Rui Sun
    FEMS Microbiology Letters.2024;[Epub]     CrossRef
  • In vitro biological control of Pyrrhoderma noxium using volatile compounds produced by termite gut-associated streptomycetes
    Cherrihan Adra, Harrchun Panchalingam, Keith Foster, Russell Tomlin, R. Andrew Hayes, D. İpek Kurtböke
    Frontiers in Plant Science.2024;[Epub]     CrossRef
  • Microbial Volatile Compounds: Prospects for Fungal Phytopathogens Management, Mechanisms and Challenges
    Hetvi Naik, Komal A. Chandarana, Harshida A. Gamit, Sapna Chandwani, Natarajan Amaresan
    Journal of Crop Health.2024; 76(2): 371.     CrossRef
  • Mycotoxin Contamination Status of Cereals in China and Potential Microbial Decontamination Methods
    Jing Zhang, Xi Tang, Yifan Cai, Wen-Wen Zhou
    Metabolites.2023; 13(4): 551.     CrossRef
  • Inhibitory effects of epiphytic Kluyveromyces marxianus from Indian senna (Cassia angustifolia Vahl.) on growth and aflatoxin production of Aspergillus flavus
    Subramani Natarajan, Dananjeyan Balachandar, Vaikuntavasan Paranidharan
    International Journal of Food Microbiology.2023; 406: 110368.     CrossRef
  • Genetic diversity, plant growth promotion potential, and antimicrobial activity of culturable endophytic actinobacteria isolated from Aconitum carmichaelii Debeaux
    Lan Zou, Yaopeng Zhang, Qian Wang, Siyu Wang, Muyi Li, Jing Huang
    Journal of Applied Microbiology.2023;[Epub]     CrossRef
  • Microbial volatilome in food safety. Current status and perspectives in the biocontrol of mycotoxigenic fungi and their metabolites
    Zahoor Ul Hassan, Safa Oufensou, Randa Zeidan, Quirico Migheli, Samir Jaoua
    Biocontrol Science and Technology.2023; 33(6): 499.     CrossRef
  • Volatile Organic Compounds: A Review of Their Current Applications as Pest Biocontrol and Disease Management
    Rosario Razo-Belman, César Ozuna
    Horticulturae.2023; 9(4): 441.     CrossRef
  • Antagonistic effects of volatile organic compounds of Saccharomyces cerevisiae NJ-1 on the growth and toxicity of Aspergillus flavus
    Ting Yang, Chengzhong Wang, Chenjie Li, Rui Sun, Mingguan Yang
    Biological Control.2023; 177: 105093.     CrossRef
  • Using Streptomyces spp. as plant growth promoters and biocontrol agents
    Mateus Torres Nazari, Vera Analise Schommer, Julia Catiane Arenhart Braun, Lara Franco dos Santos, Samuel Teixeira Lopes, Viviane Simon, Bruna Strieder Machado, Valdecir Ferrari, Luciane Maria Colla, Jeferson Steffanello Piccin
    Rhizosphere.2023; 27: 100741.     CrossRef
  • The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens
    Octávio Augusto Costa Almeida, Natália Oliveira de Araujo, Bruno Henrique Silva Dias, Carla de Sant’Anna Freitas, Luciane Fender Coerini, Choong-Min Ryu, Juliana Velasco de Castro Oliveira
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Inhibitory effect of volatile organic compounds from Bacillus flexus TR-1 against Aspergillus flavus and aflatoxins in grains during storage
    An-Dong Gong, Meng-Ge Song, Hua-Ling Wang, Gao-Zhan Wang, Jian-Hua Wang, Jing-Bo Zhang
    BioControl.2023; 68(2): 181.     CrossRef
  • Impact of Volatile Organic Compounds on the Growth of Aspergillus flavus and Related Aflatoxin B1 Production: A Review
    Laurie Josselin, Caroline De Clerck, Marthe De Boevre, Antonio Moretti, Marie-Laure Fauconnier
    International Journal of Molecular Sciences.2022; 23(24): 15557.     CrossRef
  • Biocontrol potential of 1-pentanal emitted from lactic acid bacteria strains against Aspergillus flavus in red pepper (Capsicum annuum L.)
    Bin Li, Zhirong Wang, Gang Yang, Shan Huang, Shenglan Liao, Kewei Chen, Muying Du, Zsolt Zalán, Ferenc Hegyi, Jianquan Kan
    Food Control.2022; 142: 109261.     CrossRef
  • Air Ambulance: Antimicrobial Power of Bacterial Volatiles
    Alexander Lammers, Michael Lalk, Paolina Garbeva
    Antibiotics.2022; 11(1): 109.     CrossRef
  • Volatiles of antagonistic soil yeasts inhibit growth and aflatoxin production of Aspergillus flavus
    Subramani Natarajan, Dananjeyan Balachandar, Natesan Senthil, Rethinasamy Velazhahan, Vaikuntavasan Paranidharan
    Microbiological Research.2022; 263: 127150.     CrossRef
  • Aromatic Agriculture: Volatile Compound-Based Plant Disease Diagnosis and Crop Protection
    Myoungjoo Riu, Jin-Soo Son, Sang-Keun Oh, Choong-Min Ryu
    Research in Plant Disease.2022; 28(1): 1.     CrossRef
  • Growth Promotion of Phaseolus vulgaris and Arabidopsis thaliana Seedlings by Streptomycetes Volatile Compounds
    Daniel Alonso Pérez-Corral, José de Jesús Ornelas-Paz, Guadalupe Isela Olivas, Carlos Horacio Acosta-Muñiz, Miguel Ángel Salas-Marina, David Ignacio Berlanga-Reyes, David Roberto Sepulveda, Yericka Mares-Ponce de León, Claudio Rios-Velasco
    Plants.2022; 11(7): 875.     CrossRef
  • Sub3 Inhibits Mycelia Growth and Aflatoxin Production of Aspergillus Flavus
    Wei Zhang, Yangyong Lv, Haojie Yang, Shan Wei, Shuaibing Zhang, Na Li, Yuansen Hu
    Food Biophysics.2022; 17(2): 248.     CrossRef
  • The Inhibitory Effect of Pseudomonas stutzeri YM6 on Aspergillus flavus Growth and Aflatoxins Production by the Production of Volatile Dimethyl Trisulfide
    An-Dong Gong, Yin-Yu Lei, Wei-Jie He, Yu-Cai Liao, Ling Ma, Tian-Tian Zhang, Jing-Bo Zhang
    Toxins.2022; 14(11): 788.     CrossRef
  • Microbial Volatile Organic Compounds: An Alternative for Chemical Fertilizers in Sustainable Agriculture Development
    Murugesan Chandrasekaran, Manivannan Paramasivan, Jesudass Joseph Sahayarayan
    Microorganisms.2022; 11(1): 42.     CrossRef
  • Rhamnolipids inhibit aflatoxins production in Aspergillus flavus by causing structural damages in the fungal hyphae and down-regulating the expression of their biosynthetic genes
    Ana I. Rodrigues, Eduardo J. Gudiña, Luís Abrunhosa, Ana R. Malheiro, Rui Fernandes, José A. Teixeira, Lígia R. Rodrigues
    International Journal of Food Microbiology.2021; 348: 109207.     CrossRef
  • Beneficial effects of microbial volatile organic compounds (MVOCs) in plants
    Jorge Poveda
    Applied Soil Ecology.2021; 168: 104118.     CrossRef
  • Antifungal activity of volatile organic compounds fromStreptomycessp. strain S97 againstBotrytis cinerea
    Ameni Ayed, Leila Kalai-Grami, Imen Ben Slimene, Manel Chaouachi, Houda Mankai, Ines karkouch, Naceur Djebali, Salem Elkahoui, Olfa Tabbene, Ferid Limam
    Biocontrol Science and Technology.2021; 31(12): 1330.     CrossRef
  • Characterization and potential antifungal activities of three Streptomyces spp. as biocontrol agents against Sclerotinia sclerotiorum (Lib.) de Bary infecting green bean
    Doha A. S. Gebily, Gamal A. M. Ghanem, Mona M. Ragab, Ayat M. Ali, Nour El-din K. Soliman, Tawfik H. Abd El-Moity
    Egyptian Journal of Biological Pest Control.2021;[Epub]     CrossRef
  • Antifungal Activity and Biosynthetic Potential of New Streptomyces sp. MW-W600-10 Strain Isolated from Coal Mine Water
    Piotr Siupka, Frederik Teilfeldt Hansen, Aleksandra Schier, Simone Rocco, Trine Sørensen, Zofia Piotrowska-Seget
    International Journal of Molecular Sciences.2021; 22(14): 7441.     CrossRef
  • Biocontrol potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases
    Zahaed Evangelista-Martínez, Erika Anahí Contreras-Leal, Luis Fernando Corona-Pedraza, Élida Gastélum-Martínez
    Egyptian Journal of Biological Pest Control.2020;[Epub]     CrossRef
  • Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors
    Xianfeng Ren, Qi Zhang, Wen Zhang, Jin Mao, Peiwu Li
    Toxins.2020; 12(1): 24.     CrossRef
  • The Aspergilli and Their Mycotoxins: Metabolic Interactions With Plants and the Soil Biota
    Walter P. Pfliegler, István Pócsi, Zoltán Győri, Tünde Pusztahelyi
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Harnessing microbial volatiles to replace pesticides and fertilizers
    Gareth Thomas, David Withall, Michael Birkett
    Microbial Biotechnology.2020; 13(5): 1366.     CrossRef
  • Inhibitory Effects of Eurotium cristatum on Growth and Aflatoxin B1 Biosynthesis in Aspergillus flavus
    Qiannan Zhao, Yue Qiu, Xin Wang, Yuanyuan Gu, Yuzhu Zhao, Yidi Wang, Tianli Yue, Yahong Yuan
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp.
    Danfeng Zhang, Wanling Bi, Kai Kai, Yingwang Ye, Jia Liu
    LWT.2020; 132: 109805.     CrossRef
  • Genome Mining Revealed a High Biosynthetic Potential for Antifungal Streptomyces sp. S-2 Isolated from Black Soot
    Piotr Siupka, Artur Piński, Dagmara Babicka, Zofia Piotrowska-Seget
    International Journal of Molecular Sciences.2020; 21(7): 2558.     CrossRef
  • Functional Application of Sulfur-Containing Spice Compounds
    Jinxin Xie, Benjian Liao, Ri-Yuan Tang
    Journal of Agricultural and Food Chemistry.2020; 68(45): 12505.     CrossRef
  • Efficacy of volatile compounds from Streptomyces philanthi RL‐1‐178 as a biofumigant for controlling growth and aflatoxin production of the two aflatoxin‐producing fungi on stored soybean seeds
    S. Boukaew, P. Prasertsan
    Journal of Applied Microbiology.2020; 129(3): 652.     CrossRef
  • Microenvironmental Interplay Predominated by Beneficial Aspergillus Abates Fungal Pathogen Incidence in Paddy Environment
    Xiaoyan Fan, Haruna Matsumoto, Yue Wang, Yang Hu, Yufei Liu, Hongda Fang, Bartosz Nitkiewicz, Sharon Yu Ling Lau, Qiangwei Wang, Hua Fang, Mengcen Wang
    Environmental Science & Technology.2019; 53(22): 13042.     CrossRef
Characterization of the velvet regulators in Aspergillus flavus
Tae-Jin Eom , Heungyun Moon , Jae-Hyuk Yu , Hee-Soo Park
J. Microbiol. 2018;56(12):893-901.   Published online October 25, 2018
DOI: https://doi.org/10.1007/s12275-018-8417-4
  • 42 View
  • 0 Download
  • 32 Crossref
AbstractAbstract
Fungal development and secondary metabolism are closely associated via the activities of the fungal NK-kB-type velvet regulators that are highly conserved in filamentous fungi. Here, we investigated the roles of the velvet genes in the aflatoxigenic fungus Aspergillus flavus. Distinct from other Aspergillus species, the A. flavus genome contains five velvet genes, veA, velB, velC, velD, and vosA. The deletion of velD blocks the production of aflatoxin B1, but does not affect the formation of sclerotia. Expression analyses revealed that vosA and velB mRNAs accumulated at high levels during the late phase of asexual development and in conidia. The absence of vosA or velB decreased the content of conidial trehalose and the tolerance of conidia to the thermal and UV stresses. In addition, double mutant analyses demonstrated that VosA and VelB play an inter-dependent role in trehalose biosynthesis and conidial stress tolerance. Together with the findings of previous studies, the results of the present study suggest that the velvet regulators play the conserved and vital role in sporogenesis, conidial trehalose biogenesis, stress tolerance, and aflatoxin biosynthesis in A. flavus.

Citations

Citations to this article as recorded by  
  • Data-Independent Acquisition Proteome Technology for Analysis of Antifungal and Anti-aflatoxigenic Properties of Eugenol to Aspergillus flavus
    Xinyue Zhang, Wenjing Peng, Mumin Zheng, Bolei Yang, Bowen Tai, Xu Li, Fuguo Xing
    Journal of Agricultural and Food Chemistry.2024;[Epub]     CrossRef
  • Rhein Inhibits Cell Development and Aflatoxin Biosynthesis via Energy Supply Disruption and ROS Accumulation in Aspergillus flavus
    Xiaoyan Wang, Kashif Iqbal Sahibzada, Ruibo Du, Yang Lei, Shan Wei, Na Li, Yuansen Hu, Yangyong Lv
    Toxins.2024; 16(7): 285.     CrossRef
  • Involvement of LaeA and Velvet Proteins in Regulating the Production of Mycotoxins and Other Fungal Secondary Metabolites
    Xuwen Hou, Liyao Liu, Dan Xu, Daowan Lai, Ligang Zhou
    Journal of Fungi.2024; 10(8): 561.     CrossRef
  • SscA is required for fungal development, aflatoxin production, and pathogenicity in Aspergillus flavus
    Ye-Eun Son, Hee-Soo Park
    International Journal of Food Microbiology.2024; 413: 110607.     CrossRef
  • HacA, a key transcription factor for the unfolded protein response, is required for fungal development, aflatoxin biosynthesis and pathogenicity of Aspergillus flavus
    Min Yu, Xiaoling Zhou, Dongyue Chen, Yuan Jiao, Guomin Han, Fang Tao
    International Journal of Food Microbiology.2024; 417: 110693.     CrossRef
  • The Velvet transcription factor PnVeA regulates necrotrophic effectors and secondary metabolism in the wheat pathogen Parastagonospora nodorum
    Shota Morikawa, Callum Verdonk, Evan John, Leon Lenzo, Nicolau Sbaraini, Chala Turo, Hang Li, David Jiang, Yit-Heng Chooi, Kar-Chun Tan
    BMC Microbiology.2024;[Epub]     CrossRef
  • Beyond morphogenesis and secondary metabolism: function of Velvet proteins and LaeA in fungal pathogenesis
    Ana M. Calvo, Apoorva Dabholkar, Elizabeth M. Wyman, Jessica M. Lohmar, Jeffrey W. Cary, Yvonne Nygård
    Applied and Environmental Microbiology.2024;[Epub]     CrossRef
  • UvVelC is important for conidiation and pathogenicity in the rice false smut pathogen Ustilaginoidea virens
    Mina Yu, Tianqiao Song, Junjie Yu, Huijuan Cao, Xiayan Pan, Zhongqiang Qi, Yan Du, Wende Liu, Yongfeng Liu
    Virulence.2024;[Epub]     CrossRef
  • Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change
    Martina Loi, Antonio F. Logrieco, Tünde Pusztahelyi, Éva Leiter, László Hornok, István Pócsi
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Estragole Inhibits Growth and Aflatoxin Biosynthesis of Aspergillus flavus by Affecting Reactive Oxygen Species Homeostasis
    Liuke Liang, Wei Zhang, Jing Hao, Yanyu Wang, Shan Wei, Shuaibing Zhang, Yuansen Hu, Yangyong Lv, Xiaohui Zhou
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • The novel spore-specific regulator SscA controls Aspergillus conidiogenesis
    Ye-Eun Son, Jae-Hyuk Yu, Hee-Soo Park, Gustavo H. Goldman
    mBio.2023;[Epub]     CrossRef
  • Light regulation of secondary metabolism in fungi
    Wenbin Yu, Rongqiang Pei, Yufei Zhang, Yayi Tu, Bin He
    Journal of Biological Engineering.2023;[Epub]     CrossRef
  • Regulation of Fungal Morphogenesis and Pathogenicity of Aspergillus flavus by Hexokinase AfHxk1 through Its Domain Hexokinase_2
    Zongting Huang, Dandan Wu, Sile Yang, Wangzhuo Fu, Dongmei Ma, Yanfang Yao, Hong Lin, Jun Yuan, Yanling Yang, Zhenhong Zhuang
    Journal of Fungi.2023; 9(11): 1077.     CrossRef
  • Implication of VelB in the development, pathogenicity, and secondary metabolism of Penicillium expansum
    Nadia Tahtah, Chrystian Zetina-Serrano, Ophélie Rocher, Claire Naylies, Yannick Lippi, André El Khoury, Ali Atoui, Emilien L. Jamin, Isabelle P. Oswald, Sophie Lorber, Olivier Puel
    Postharvest Biology and Technology.2023; 195: 112121.     CrossRef
  • Histone 2-Hydroxyisobutyryltransferase Encoded by Afngg1 Is Involved in Pathogenicity and Aflatoxin Biosynthesis in Aspergillus flavus
    Jing Wang, Liuke Liang, Shan Wei, Shuaibing Zhang, Yuansen Hu, Yangyong Lv
    Toxins.2022; 15(1): 7.     CrossRef
  • Roles of AaVeA on Mycotoxin Production via Light in Alternaria alternata
    Liuqing Wang, Meng Wang, Jian Jiao, Hongmei Liu
    Frontiers in Microbiology.2022;[Epub]     CrossRef
  • Regulation of Conidiogenesis in Aspergillus flavus
    He-Jin Cho, Sung-Hun Son, Wanping Chen, Ye-Eun Son, Inhyung Lee, Jae-Hyuk Yu, Hee-Soo Park
    Cells.2022; 11(18): 2796.     CrossRef
  • The Zinc Finger Transcription Factor BbCmr1 Regulates Conidium Maturation in Beauveria bassiana
    Jin-Feng Chen, Jun-Jie Tan, Jun-Yao Wang, A-Jing Mao, Xue-Ping Xu, Yan Zhang, Xue-li Zheng, Yu Liu, Dan jin, Xian-Bi Li, Yan-Hua Fan, Christina A. Cuomo
    Microbiology Spectrum.2022;[Epub]     CrossRef
  • Upstream Regulation of Development and Secondary Metabolism in Aspergillus Species
    Heungyun Moon, Kap-Hoon Han, Jae-Hyuk Yu
    Cells.2022; 12(1): 2.     CrossRef
  • Recent advances in metabolic regulation and bioengineering of gibberellic acid biosynthesis in Fusarium fujikuroi
    Hao-Nan Wang, Xia Ke, Jun-Ping Zhou, Zhi-Qiang Liu, Yu-Guo Zheng
    World Journal of Microbiology and Biotechnology.2022;[Epub]     CrossRef
  • Inhibition ofAspergillus flavus growth and aflatoxin B1 production by natamycin
    P. Chang, B. Tai, M. Zheng, Q. Yang, F. Xing
    World Mycotoxin Journal.2022; 15(3): 269.     CrossRef
  • Regulation of kojic acid production in Aspergillus oryzae
    Motoaki Sano
    JSM Mycotoxins.2022; 72(1): 39.     CrossRef
  • The putative sensor histidine kinase VadJ coordinates development and sterigmatocystin production in Aspergillus nidulans
    Yanxia Zhao, Mi-Kyung Lee, Jieyin Lim, Heungyun Moon, Hee-Soo Park, Weifa Zheng, Jae-Hyuk Yu
    Journal of Microbiology.2021; 59(8): 746.     CrossRef
  • Fungal G-Protein-Coupled Receptors: A Promising Mediator of the Impact of Extracellular Signals on Biosynthesis of Ochratoxin A
    Jing Gao, Xinge Xu, Kunlun Huang, Zhihong Liang
    Frontiers in Microbiology.2021;[Epub]     CrossRef
  • Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores
    Ming-Yueh Wu, Matthew E. Mead, Mi-Kyung Lee, George F. Neuhaus, Donovon A. Adpressa, Julia I. Martien, Ye-Eun Son, Heungyun Moon, Daniel Amador-Noguez, Kap-Hoon Han, Antonis Rokas, Sandra Loesgen, Jae-Hyuk Yu, Hee-Soo Park, Xiaorong Lin
    mBio.2021;[Epub]     CrossRef
  • Molecular Mechanisms of Conidial Germination in Aspergillus spp
    Tim J. H. Baltussen, Jan Zoll, Paul E. Verweij, Willem J. G. Melchers
    Microbiology and Molecular Biology Reviews.2020;[Epub]     CrossRef
  • The role of the VosA-repressed dnjA gene in development and metabolism in Aspergillus species
    Ye-Eun Son, He-Jin Cho, Wanping Chen, Sung-Hun Son, Mi-Kyung Lee, Jae-Hyuk Yu, Hee-Soo Park
    Current Genetics.2020; 66(3): 621.     CrossRef
  • The velvet Regulator VosA Governs Survival and Secondary Metabolism of Sexual Spores in Aspergillus nidulans
    Min-Ju Kim, Mi-Kyung Lee, Huy Quang Pham, Myeong Ju Gu, Bohan Zhu, Sung-Hun Son, Dongyup Hahn, Jae-Ho Shin, Jae-Hyuk Yu, Hee-Soo Park, Kap-Hoon Han
    Genes.2020; 11(1): 103.     CrossRef
  • Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species
    Ye-Eun Son, He-Jin Cho, Mi-Kyung Lee, Hee-Soo Park, Kap-Hoon Han
    PLOS ONE.2020; 15(2): e0228643.     CrossRef
  • Function of crzA in Fungal Development and Aflatoxin Production in Aspergillus flavus
    Su-Yeon Lim, Ye-Eun Son, Dong-Hyun Lee, Tae-Jin Eom, Min-Ju Kim, Hee-Soo Park
    Toxins.2019; 11(10): 567.     CrossRef
  • Conserved Roles of MonA in Fungal Growth and Development inAspergillusSpecies
    Ye-Eun Son, Hee-Soo Park
    Mycobiology.2019; 47(4): 457.     CrossRef
  • The Velvet Proteins VosA and VelB Play Different Roles in Conidiation, Trap Formation, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys oligospora
    Guosheng Zhang, Yaqing Zheng, Yuxin Ma, Le Yang, Meihua Xie, Duanxu Zhou, Xuemei Niu, Ke-Qin Zhang, Jinkui Yang
    Frontiers in Microbiology.2019;[Epub]     CrossRef
Variation of cassiicolin genes among Chinese isolates of Corynespora cassiicola
Jun Wu , Xuewen Xie , Yanxia Shi , Ali Chai , Qi Wang , Baoju Li
J. Microbiol. 2018;56(9):634-647.   Published online July 27, 2018
DOI: https://doi.org/10.1007/s12275-018-7497-5
  • 37 View
  • 0 Download
  • 11 Crossref
AbstractAbstract
Corynespora cassiicola is a species of fungus that is a plant pathogen of many agricultural crop plants, including severe target spot disease on cucumber. Cassiicolin is an important effector of pathogenicity of this fungus. In this study, we collected 141 Corynespora isolates from eighteen hosts, and the casscolin gene was detected in 82 C. cassiicola strains. The deduced protein sequences revealed that 72 isolates contained the Cas2 gene, two strains from Gynura bicolor harboured the Cas2.2 gene, and 59 isolates without a cassiicolin gene were classified as Cas0. Phylogenetic analyses was performed for the 141 isolates using four loci (ITS, ga4, caa5, and act1) and revealed two genetic clusters. Cluster A is composed of four subclades: subcluster A1 includes all Cas2 isolates plus 18 Cas0 strains, subcluster A2 includes the eight Cas5 isolates and one Cas0 isolate, and subclusters A3 and A4 contain Cas0 strains. Cluster B consists of 21 Cas0 isolates. Twenty-two C. cassiicola strains from different toxin classes showed varying degrees of virulence against cucumber. Cas0 or Cas2 strains induced diverse responses on cucumber, from no symptoms to symptoms of moderate or severe infection, but all Cas5 isolates exhibited avirulence on cucumber.

Citations

Citations to this article as recorded by  
  • Diversity of cassiicolin profiles and culture filtrate toxicity of Corynespora cassiicola isolates from South Indian rubber plantations
    Reshma T R, Shilpa Babu, Vineeth V K, Shaji Philip
    Industrial Crops and Products.2025; 224: 120243.     CrossRef
  • The Diseases and Pests of Rubber Tree and Their Natural Control Potential: A Bibliometric Analysis
    Liqiong Chen, Lidan Xu, Xiaona Li, Yilin Wang, Yun Feng, Guixiu Huang
    Agronomy.2023; 13(8): 1965.     CrossRef
  • Need for disease resistance breeding against Corynespora cassiicola in crops
    Edgar Sierra-Orozco, German Sandoya, Seonghee Lee, Gary Vallad, Samuel Hutton
    Frontiers in Agronomy.2023;[Epub]     CrossRef
  • Comparison and Correlation of Corynespora cassiicola Populations from Kiwifruit and Other Hosts Based on Morphology, Phylogeny, and Pathogenicity
    Jing Xu, Guoshu Gong, Yongliang Cui, Yuhang Zhu, Jun Wang, Kaikai Yao, Wen Chen, Cuiping Wu, Rui Yang, Xiaodan Yang, Pan Li, Henan Zhao, Sen Zhong, Yi Luo, Yue Li, Wenfei Liao
    Plant Disease.2023; 107(7): 1979.     CrossRef
  • Unraveling the Host-Selective Toxic Interaction of Cassiicolin with Lipid Membranes and Its Cytotoxicity
    Kien Xuan Ngo, Phuong Doan N. Nguyen, Hirotoshi Furusho, Makoto Miyata, Tomomi Shimonaka, Nguyen Ngoc Bao Chau, Nguyen Phuong Vinh, Nguyen Anh Nghia, Tareg Omer Mohammed, Takehiko Ichikawa, Noriyuki Kodera, Hiroki Konno, Takeshi Fukuma, Nguyen Bao Quoc
    Phytopathology®.2022; 112(7): 1524.     CrossRef
  • The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola
    Thaís Carolina da Silva Dal’Sasso, Vinícius Delgado da Rocha, Hugo Vianna Silva Rody, Maximiller Dal-Bianco Lamas Costa, Luiz Orlando de Oliveira
    Current Genetics.2022; 68(5-6): 645.     CrossRef
  • Identification and virulence evaluation of Corynespora cassiicola cassiicolin-encoding gene isolates from rubber trees in Vietnam
    Nguyen Ngoc Bao Chau, Nguyen Van Minh, Nguyen Mai Nghiep, Nguyen Phuong Vinh, Nguyen Anh Nghia, Nguyen Bao Quoc
    Tropical Plant Pathology.2022; 47(3): 378.     CrossRef
  • The fungal pathogen Corynespora cassiicola: A review and insights for target spot management on cotton and Soya bean
    Marina N. Rondon, Kathy Lawrence
    Journal of Phytopathology.2021; 169(6): 329.     CrossRef
  • Mitogenome-wide comparison and phylogeny reveal group I intron dynamics and intraspecific diversification within the phytopathogen Corynespora cassiicola
    Qingzhou Ma, Haiyan Wu, Yuehua Geng, Qiang Li, Rui Zang, Yashuang Guo, Chao Xu, Meng Zhang
    Computational and Structural Biotechnology Journal.2021; 19: 5987.     CrossRef
  • Genomic Characteristics and Comparative Genomics Analysis of Two Chinese Corynespora cassiicola Strains Causing Corynespora Leaf Fall (CLF) Disease
    Boxun Li, Yang Yang, Jimiao Cai, Xianbao Liu, Tao Shi, Chaoping Li, Yipeng Chen, Pan Xu, Guixiu Huang
    Journal of Fungi.2021; 7(6): 485.     CrossRef
  • Endophytes from Wild Rubber Trees as Antagonists of the Pathogen Corynespora cassiicola
    Valérie Pujade-Renaud, Marine Déon, Romina Gazis, Sébastien Ribeiro, Florence Dessailly, Françoise Granet, Priscila Chaverri
    Phytopathology®.2019; 109(11): 1888.     CrossRef
Isolation and characterization of Aspergillus flavus strains in China
Firew Tafesse Mamo , Bo Shang , Jonathan Nimal Selvaraj , Yan Wang , Yang Liu
J. Microbiol. 2018;56(2):119-127.   Published online February 2, 2018
DOI: https://doi.org/10.1007/s12275-018-7144-1
  • 37 View
  • 0 Download
  • 19 Crossref
AbstractAbstract
Important staple foods (peanuts, maize and rice) are susceptible to contamination by aflatoxin (AF)-producing fungi such as Aspergillus flavus. The objective of this study was to explore non-aflatoxin-producing (atoxigenic) A. flavus strains as biocontrol agents for the control of AFs. In the current study, a total of 724 A. flavus strains were isolated from different regions of China. Polyphasic approaches were utilized for species identification. Non-aflatoxin and non-cyclopiazonic acid (CPA)-producing strains were further screened for aflatoxin B1 (AFB1) biosynthesis pathway gene clusters using a PCR assay. Strains lacking an amplicon for the regulatory gene aflR were then analyzed for the presence of the other 28 biosynthetic genes. Only 229 (32%) of the A. flavus strains were found to be atoxigenic. Smaller (S) sclerotial phenotypes were dominant (51%) compared to large (L, 34%) and non-sclerotial (NS, 15%) phenotypes. Among the atoxigenic strains, 24 strains were PCR-negative for the fas-1 and aflJ genes. Sixteen (67%) atoxigenic A. flavus strains were PCRnegative for 10 or more of the biosynthetic genes. Altogether, 18 new PCR product patterns were observed, indicating great diversity in the AFB1 biosynthesis pathway. The current study demonstrates that many atoxigenic A. flavus strains can be isolated from different regions of China. In the future laboratory as well as field based studies are recommended to test these atoxigenic strains as biocontrol agents for aflatoxin contamination.

Citations

Citations to this article as recorded by  
  • Creating large chromosomal segment deletions in Aspergillus flavus by a dual CRISPR/Cas9 system: Deletion of gene clusters for production of aflatoxin, cyclopiazonic acid, and ustiloxin B
    Perng-Kuang Chang
    Fungal Genetics and Biology.2024; 170: 103863.     CrossRef
  • The biodiversity of Aspergillus flavus in stored rice grain leads to a decrease in the overall aflatoxin B1 production in these species
    Song Tan, Fang Ma, Yajie Wu, Yuancheng Xu, Ajuan Niu, Yuping Chen, Guangyu Wang, Weifen Qiu
    International Journal of Food Microbiology.2023; 406: 110416.     CrossRef
  • Aspergillus flavus and Fusarium verticillioides and Their Main Mycotoxins: Global Distribution and Scenarios of Interactions in Maize
    Xiangrong Chen, Mohamed F. Abdallah, Sofie Landschoot, Kris Audenaert, Sarah De Saeger, Xiangfeng Chen, Andreja Rajkovic
    Toxins.2023; 15(9): 577.     CrossRef
  • Low-cost, specific PCR assays to identify the main aflatoxigenic species of Aspergillus section Flavi
    Josué J. Silva, Maria H.P. Fungaro, Taynara Souza Soto, Marta H. Taniwaki, Beatriz T. Iamanaka
    Journal of Microbiological Methods.2022; 196: 106470.     CrossRef
  • Practical considerations will ensure the continued success of pre-harvest biocontrol using non-aflatoxigenic Aspergillus flavus strains
    Geromy G. Moore
    Critical Reviews in Food Science and Nutrition.2022; 62(15): 4208.     CrossRef
  • Biocontrol efficacy of atoxigenic Aspergillus flavus strains against aflatoxin contamination in peanut field in Guangdong province, South China
    Firew Tafesse Mamo, Bo Shang, Jonathan Nimal Selvaraj, Yongquan Zheng, Yang Liu
    Mycology.2022; 13(2): 143.     CrossRef
  • The Antifungal Activity of Cinnamon-Litsea Combined Essential Oil against Dominant Fungal Strains of Moldy Peanut Kernels
    Yijun Liu, Ruolan Wang, Lingli Zhao, Shanshan Huo, Shichang Liu, Hanxiao Zhang, Akio Tani, Haoxin Lv
    Foods.2022; 11(11): 1586.     CrossRef
  • Light and scanning electron microscopic characterization of aflatoxins producing Aspergillus flavus in the maize crop
    Wajiha Seerat, Abida Akram, Rahmatullah Qureshi, Ghulam Yaseen, Tariq Mukhtar, Nafeesa Qudsia Hanif
    Microscopy Research and Technique.2022; 85(8): 2894.     CrossRef
  • Efficacy of Entomopathogenic Fungal Formulations against Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae) and Their Extracellular Enzymatic Activities
    Fredrick Fidelis Umaru, Khanom Simarani
    Toxins.2022; 14(9): 584.     CrossRef
  • Distribution of Aspergillus Fungi and Recent Aflatoxin Reports, Health Risks, and Advances in Developments of Biological Mitigation Strategies in China
    Firew Tafesse Mamo, Birhan Addisie Abate, Yougquan Zheng, Chengrong Nie, Mingjun He, Yang Liu
    Toxins.2021; 13(10): 678.     CrossRef
  • Aspergillus Section Flavi from Four Agricultural Products and Association of Mycotoxin and Sclerotia Production with Isolation Source
    Azadeh Habibi, Daryoush Afzali
    Current Microbiology.2021; 78(10): 3674.     CrossRef
  • Development of an on-spot and rapid recombinase polymerase amplification assay for Aspergillus flavus detection in grains
    Qijun Liu, Xu Li, Riqin Wu, Xinglong Xiao, Fuguo Xing
    Food Control.2021; 125: 107957.     CrossRef
  • Bio-competitive exclusion: efficacy of non-aflatoxigenic Aspergillus section Flavi-L morphotypes in control of aflatoxigenic Aspergillus flavus in groundnuts (Arachis hypogaea L.)
    Anyway Chofamba
    Beni-Suef University Journal of Basic and Applied Sciences.2021;[Epub]     CrossRef
  • Synthesis of chitosan–silver nanoparticles with antifungal properties on bamboo straws
    Vo-Van Quoc Bao, Le Dai Vuong, Yves Waché
    Nanomaterials and Energy.2021; 10(2): 111.     CrossRef
  • Competency of Clove and Cinnamon Essential Oil Fumigation against Toxigenic and Atoxigenic Aspergillus flavus Isolates
    Sansern Rangsuwan, Chainarong Rattanakreetakul, Ratiya Pongpisutta
    Journal of Pure and Applied Microbiology.2021; 15(3): 1325.     CrossRef
  • Deciphering the origin ofAspergillus flavusNRRL21882, the active biocontrol agent of Afla‐Guard®
    P.‐K. Chang, T.D. Chang, K. Katoh
    Letters in Applied Microbiology.2021; 72(5): 509.     CrossRef
  • Evaluation of the Potential of Fungal Biopesticides for the Biological Control of the Seed Bug, Elasmolomus pallens (Dallas) (Hemiptera: Rhyparochromidae)
    Fredrick Fidelis Umaru, Khanom Simarani
    Insects.2020; 11(5): 277.     CrossRef
  • Occurrence and toxigenic potential ofAspergillussectionFlavion wheat and sorghum silages in Uruguay
    Agustina del Palacio, Dinorah Pan
    Mycology.2020; 11(2): 147.     CrossRef
  • Genome‐wide nucleotide variation distinguishesAspergillus flavusfromAspergillus oryzaeand helps to reveal origins of atoxigenicA. flavusbiocontrol strains
    P.‐K. Chang
    Journal of Applied Microbiology.2019; 127(5): 1511.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP