Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Previous issues

Page Path
HOME > Browse Articles > Previous issues
10 Previous issues
Filter
Filter
Article category
Keywords
Authors
Volume 62(8); August 2024
Prev issue Next issue
Review
Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells.
Huiling Xu, Shengnan Wang, Xiaozhou Wang, Pu Zhang, Qi Zheng, ChangXi Qi, Xiaoting Liu, Muzi Li, Yongxia Liu, Jianzhu Liu
J. Microbiol. 2024;62(8):581-590.   Published online August 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00162-9
  • 23 View
  • 0 Download
AbstractAbstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Journal Articles
Autotrophy to Heterotrophy: Shift in Bacterial Functions During the Melt Season in Antarctic Cryoconite Holes.
Aritri Sanyal, Runa Antony, Gautami Samui, Meloth Thamban
J. Microbiol. 2024;62(8):591-609.   Published online May 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00140-1
  • 21 View
  • 0 Download
  • 2 Citations
AbstractAbstract
Microbes residing in cryoconite holes (debris, water, and nutrient-rich ecosystems) on the glacier surface actively participate in carbon and nutrient cycling. Not much is known about how these communities and their functions change during the summer melt-season when intense ablation and runoff alter the influx and outflux of nutrients and microbes. Here, we use high-throughput-amplicon sequencing, predictive metabolic tools and Phenotype MicroArray techniques to track changes in bacterial communities and functions in cryoconite holes in a coastal Antarctic site and the surrounding fjord, during the summer season. The bacterial diversity in cryoconite hole meltwater was predominantly composed of heterotrophs (Proteobacteria) throughout the season. The associated functional potentials were related to heterotrophic-assimilatory and -dissimilatory pathways. Autotrophic Cyanobacterial lineages dominated the debris community at the beginning and end of summer, while heterotrophic Bacteroidota- and Proteobacteria-related phyla increased during the peak melt period. Predictive functional analyses based on taxonomy show a shift from predominantly phototrophy-related functions to heterotrophic assimilatory pathways as the melt-season progressed. This shift from autotrophic to heterotrophic communities within cryoconite holes can affect carbon drawdown and nutrient liberation from the glacier surface during the summer. In addition, the flushing out and export of cryoconite hole communities to the fjord could influence the biogeochemical dynamics of the fjord ecosystem.
Cultivation of Diverse Novel Marine Bacteria from Deep Ocean Sediment Using Spent Culture Supernatant of Ca. Bathyarchaeia Enrichment.
Sidra Erum Ishaq, Tariq Ahmad, Lewen Liang, Ruize Xie, Tiantian Yu, Yinzhao Wang, Fengping Wang
J. Microbiol. 2024;62(8):611-625.   Published online July 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00145-w
  • 18 View
  • 0 Download
AbstractAbstract
Most microorganisms resist pure cultivation under conventional laboratory conditions. One of the primary issues for this un-culturability is the absence of biologically produced growth-promoting factors in traditionally defined growth media. However, whether cultivating microbes by providing spent culture supernatant of pivotal microbes in the growth medium can be an effective approach to overcome this limitation is still an under-explored area of research. Here, we used the spent culture medium (SCM) method to isolate previously uncultivated marine bacteria and compared the efficiency of this method with the traditional cultivation (TC) method. In the SCM method, Ca. Bathyarchaeia-enriched supernatant (10%) was used along with recalcitrant organic substrates such as lignin, humic acid, and organic carbon mixture. Ca. Bathyarchaeia, a ubiquitous class of archaea, have the capacity to produce metabolites, making their spent culture supernatant a key source to recover new bacterial stains. Both cultivation methods resulted in the recovery of bacterial species from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota. However, our SCM approach also led to the recovery of species from rarely cultivated groups, such as Planctomycetota, Deinococcota, and Balneolota. In terms of the isolation of new taxa, the SCM method resulted in the cultivation of 80 potential new strains, including one at the family, 16 at the genus, and 63 at the species level, with a novelty ratio of ~ 35% (80/219). In contrast, the TC method allowed the isolation of ~ 10% (19/171) novel strains at species level only. These findings suggest that the SCM approach improved the cultivation of novel and diverse bacteria.
RapB Regulates Cell Adhesion and Migration in Dictyostelium, Similar to RapA.
Uri Han, Nara Han, Byeonggyu Park, Taeck Joong Jeon
J. Microbiol. 2024;62(8):627-637.   Published online June 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00143-y
  • 16 View
  • 0 Download
AbstractAbstract
Ras small GTPases act as molecular switches in various cellular signaling pathways, including cell migration, proliferation, and differentiation. Three Rap proteins are present in Dictyostelium; RapA, RapB, and RapC. RapA and RapC have been reported to have opposing functions in the control of cell adhesion and migration. Here, we investigated the role of RapB, a member of the Ras GTPase subfamily in Dictyostelium, focusing on its involvement in cell adhesion, migration, and developmental processes. This study revealed that RapB, similar to RapA, played a crucial role in regulating cell morphology, adhesion, and migration. rapB null cells, which were generated by CRISPR/Cas9 gene editing, displayed altered cell size, reduced cell-substrate adhesion, and increased migration speed during chemotaxis. These phenotypes of rapB null cells were restored by the expression of RapB and RapA, but not RapC. Consistent with these results, RapB, similar to RapA, failed to rescue the phenotypes of rapC null cells, spread morphology, increased cell adhesion, and decreased migration speed during chemotaxis. Multicellular development of rapB null cells remained unaffected. These results suggest that RapB is involved in controlling cell morphology and cell adhesion. Importantly, RapB appears to play an inhibitory role in regulating the migration speed during chemotaxis, possibly by controlling cell-substrate adhesion, resembling the functions of RapA. These findings contribute to the understanding of the functional relationships among Ras subfamily proteins.
Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast.
Ho-Jung Kim, Soo-Yeon Cho, Soo-Jin Jung, Yong-Jun Cho, Jung-Hye Roe, Kyoung-Dong Kim
J. Microbiol. 2024;62(8):639-648.   Published online June 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00147-8
  • 15 View
  • 0 Download
AbstractAbstract
Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.
FgVAC1 is an Essential Gene Required for Golgi-to-Vacuole Transport and Fungal Development in Fusarium graminearum.
Sieun Kim, Jiyeun Park, You-Kyoung Han, Hokyoung Son
J. Microbiol. 2024;62(8):649-660.   Published online July 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00160-x
  • 19 View
  • 0 Download
AbstractAbstract
Fusarium graminearum is an important plant pathogen that causes head blight in cereal crops such as wheat, barley, and rice worldwide. In this study, we identified and functionally characterized FgVAC1, an essential gene in F. graminearum that encodes a Rab5 effector involved in membrane tethering functions. The essentiality of FgVAC1 was confirmed through a conditional promoter replacement strategy using the zearalenone-inducible promoter (PZEAR). Cytological analyses revealed that FgVac1 colocalizes with FgRab51 on early endosomes and regulates the proper transport of the vacuolar hydrolase FgCpy1 to the vacuole. Suppression of FgVAC1 led to inhibited vegetative growth, reduced asexual and sexual reproduction, decreased deoxynivalenol (DON) biosynthesis, and diminished pathogenicity. Our findings highlight the significant role of FgVac1 in vacuolar protein sorting, fungal development, and plant infection in F. graminearum.
Fleagrass (Adenosma buchneroides Bonati) Acts as a Fungicide Against Candida albicans by Damaging Its Cell Wall.
Youwei Wu, Hongxia Zhang, Hongjie Chen, Zhizhi Du, Qin Li, Ruirui Wang
J. Microbiol. 2024;62(8):661-670.   Published online July 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00146-9
  • 18 View
  • 0 Download
AbstractAbstract
Fleagrass, a herb known for its pleasant aroma, is widely used as a mosquito repellent, antibacterial agent, and for treating colds, reducing swelling, and alleviating pain. The antifungal effects of the essential oils of fleagrass and carvacrol against Candida albicans were investigated by evaluating the growth and the mycelial and biofilm development of C. albicans. Transmission electron microscopy was used to evaluate the integrity of the cell membrane and cell wall of C. albicans. Fleagrass exhibited high fungicidal activity against C. albicans at concentrations of 0.5% v/v (via the Ras1/cAMP/PKA pathway). Furthermore, transmission electron microscopy revealed damage to the cell wall and membrane after treatment with the essential oil, which was further confirmed by the increased levels of β-1,3-glucan and chitin in the cell wall. This study showed that fleagrass exerts good fungicidal and hyphal growth inhibition activity against C. albicans by disrupting its cell wall, and thus, fleagrass may be a potential antifungal drug.
Enhancing Seed Germination of Cremastra appendiculata: Screening and Identification of Four New Symbiotic Fungi in the Psathyrellaceae Family.
Zhangneng Pan, Jing Wang, Shanshan He, Haiyang Zhao, Xinyue Dong, Tao Feng, Yanyan Meng, Xiaojun Li
J. Microbiol. 2024;62(8):671-682.   Published online June 28, 2024
DOI: https://doi.org/10.1007/s12275-024-00148-7
  • 19 View
  • 0 Download
AbstractAbstract
Several coprinoid fungi have been identified as promotors of Cremastra appendiculata seed germination, while others appear ineffective. This study aimed to discern which genera within the Psathyrellaceae family exhibit this capability and to identify the most effective coprinoid fungi for the cultivation of C. appendiculata. We collected 21 coprinoid fungi from diverse sources and symbiotically cultured them with C. appendiculata seeds. 9 fungi were found to induce seed germination and support seed development, specifically within the genera Coprinellus, Tulosesus, and Candolleomyces. In contrast, fungi that failed to promote germination predominantly belonged to the genera Coprinopsis and Parasola. Notably, four fungi-Coprinellus xanthothrix, Coprinellus pseudodisseminatus, Psathyrella singeri, and Psathyrella candolleana-were documented for the first time as capable of enhancing C. appendiculata seed germination. Strain 218LXJ-10, identified as Coprinellus radians, demonstrated the most significant effect and has been implemented in large-scale production, underscoring its considerable practical value. These findings contribute vital scientific insights for the conservation and sustainable use of C. appendiculata resources.
Enterococcus Phage vB_EfaS_HEf13 as an Anti-Biofilm Agent Against Enterococcus faecalis.
Dongwook Lee, Jintaek Im, A Reum Kim, Woohyung Jun, Cheol-Heui Yun, Seung Hyun Han
J. Microbiol. 2024;62(8):683-693.   Published online June 27, 2024
DOI: https://doi.org/10.1007/s12275-024-00150-z
  • 17 View
  • 0 Download
AbstractAbstract
Enterococcus faecalis is a Gram-positive bacterium that is frequently found in the periapical lesion of patients with apical periodontitis. Its biofilm formation in root canal is closely related to the development of refractory apical periodontitis by providing increased resistance to endodontic treatments. Phage therapy has recently been considered as an efficient therapeutic strategy in controlling various periodontal pathogens. We previously demonstrated the bactericidal capacities of Enterococcus phage vB_EfaS_HEf13 (phage HEf13) against clinically-isolated E. faecalis strains. Here, we investigated whether phage HEf13 affects biofilm formation and pre-formed biofilm of clinically-isolated E. faecalis, and its combinatory effect with endodontic treatments, including chlorhexidine (CHX) and penicillin. The phage HEf13 inhibited biofilm formation and disrupted pre-formed biofilms of E. faecalis in a dose- and time-dependent manner. Interestingly, phage HEf13 destroyed E. faecalis biofilm exopolysaccharide (EPS), which is known to be a major component of bacterial biofilm. Furthermore, combined treatment of phage HEf13 with CHX or penicillin more potently inhibited biofilm formation and disrupted pre-formed biofilm than either treatment alone. Confocal laser scanning microscopic examination demonstrated that these additive effects of the combination treatments on disruption of pre-formed biofilm are mediated by relatively enhanced reduction in thickness distribution and biomass of biofilm. Collectively, our results suggest that the effect of phage HEf13 on E. faecalis biofilm is mediated by its EPS-degrading property, and its combination with endodontic treatments more potently suppresses E. faecalis biofilm, implying that phage HEf13 has potential to be used as a combination therapy against E. faecalis infections.
Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29.
Xiaorong Sun, Yaoyu Cai, Dexin Wang
J. Microbiol. 2024;62(8):695-707.   Published online August 20, 2024
DOI: https://doi.org/10.1007/s12275-024-00153-w
  • 21 View
  • 0 Download
AbstractAbstract
Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. In this study, we isolated a novel γ-PGA-producing strain, Bacillus halotolerans F29. The one-factor-at-a-time method was used to investigate the influence of carbon sources, nitrogen sources, and culture parameters on γ-PGA production. The optimal carbon and nitrogen sources were sucrose and (NH4)2SO4, respectively. The optimal culture conditions for γ-PGA production were determined to be 37 °C and a pH of 5.5. Response surface methodology was used to determine the optimum medium components: 77.6 g/L sucrose, 43.0 g/L monosodium glutamate, and 2.2 g/L K2HPO4. The γ-PGA titer increased significantly from 8.5 ± 0.3 g/L to 20.7 ± 0.7 g/L when strain F29 was cultivated in the optimized medium. Furthermore, the γ-PGA titer reached 50.9 ± 1.5 g/L with a productivity of 1.33 g/L/h and a yield of 2.23 g of γ-PGA/g of L-glutamic acid with the optimized medium in fed-batch fermentation. The maximum γ-PGA titer reached 45.3 ± 1.1 g/L, with a productivity of 1.06 g/L/h when molasses was used as a carbon source. It should be noted that the γ-PGA yield in this study was the highest of all reported studies, indicating great potential for the industrial production of γ-PGA.

Journal of Microbiology : Journal of Microbiology
TOP