Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
24 "Cancer"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Article
Upgrading Isoquercitrin Concentration via Submerge Fermentation of Mulberry Fruit Extract with Edible Probiotics to Suppress Gene Targets for Controlling Kidney Cancer and Inflammation
Md Rezaul Karim, Safia Iqbal, Shahnawaz Mohammad, Jong-Hoon Kim, Li Ling, Changbao Chen, Abdus Samad, Md Anwarul Haque, Deok-Chun Yang, Yeon Ju Kim, Dong Uk Yang
J. Microbiol. 2024;62(10):919-927.   Published online October 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00163-8
  • 23 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
In recent years, kidney cancer has become one of the most serious medical issues. Kidney cancer is treated with a variety of active compounds that trigger genes that cause cancer. We identified in our earlier research that isoquercitrin (IQ) can activate PIK3CA, IGF1R, and PTGS2. However, it has a very low bioavailability because of its lower solubility in water. So, we utilized sub-merge fermentation technology with two well-known probiotics, Lactobacillus acidophilus and Bacillus subtilis, as a microbial source and mulberry fruit extract as a substrate, which has a high IQ level to improve IQ yield. Furthermore, we compared the total phenolic, flavonoid, and antioxidant contents of fermented and non-fermented samples, and we found that the fermented samples had greater levels than non-fermented sample. In addition, the high-performance liquid chromatography (HPLC) results showed that the fermented mulberry fruit extract from B. subtilis and L. acidophilus showed higher IQ values (190.73 ± 0.004 μg/ml and 220.54 ± 0.007 μg/ml, respectively), compared to the non-fermented samples, which had IQ values (80.12 ± 0.002 μg/ml). Additionally, at 62.5 µg/ml doses of each sample, a normal kidney cell line (HEK 293) showed higher cell viability for fermented and non-fermented samples. Conversely, at the same doses, the fermented samples of L. acidophilus and B. subtilis in a kidney cancer cell line (A498) showed an inhibition of cell growth around 36% and 31%, respectively. Finally, we performed RT and qRT PCR assay, and we found a significant reduction in the expression of the PTGS2, PIK3CA, and IGF1R genes. We therefore can conclude that the fermented samples have a higher concentration of isoquercitrin, and also can inhibit the expression of the genes PTGS2, PIK3CA, and IGF1R, which in turn regulates kidney cancer and inflammation.

Citations

Citations to this article as recorded by  
  • Recent research on the bioactivity of polyphenols derived from edible fungi and their potential in chronic disease prevention
    Wenbin Yu, Yufei Zhang, Yi Lu, Zhiwei Ouyang, Jiahua Peng, Yayi Tu, Bin He
    Journal of Functional Foods.2025; 124: 106627.     CrossRef
Review
Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses
Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(7):491-509.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00159-4
  • 158 View
  • 0 Download
  • 3 Web of Science
  • 5 Crossref
AbstractAbstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.

Citations

Citations to this article as recorded by  
  • Engineering an oncolytic adenoviral platform for precise delivery of antisense peptide nucleic acid to modulate PD-L1 overexpression in cancer cells
    Andrea Patrizia Falanga, Francesca Greco, Monica Terracciano, Stefano D’Errico, Maria Marzano, Sara Feola, Valentina Sepe, Flavia Fontana, Ilaria Piccialli, Vincenzo Cerullo, Hélder A. Santos, Nicola Borbone
    International Journal of Pharmaceutics.2025; 668: 124941.     CrossRef
  • Enhancing precision in cancer treatment: the role of gene therapy and immune modulation in oncology
    Emile Youssef, Brandon Fletcher, Dannelle Palmer
    Frontiers in Medicine.2025;[Epub]     CrossRef
  • Protein-Based Degraders: From Chemical Biology Tools to Neo-Therapeutics
    Lisha Ou, Mekedlawit T. Setegne, Jeandele Elliot, Fangfang Shen, Laura M. K. Dassama
    Chemical Reviews.2025;[Epub]     CrossRef
  • Molecular Engineering of Virus Tropism
    Bo He, Belinda Wilson, Shih-Heng Chen, Kedar Sharma, Erica Scappini, Molly Cook, Robert Petrovich, Negin P. Martin
    International Journal of Molecular Sciences.2024; 25(20): 11094.     CrossRef
  • Antisolvent 3D Printing of Gene-Activated Scaffolds for Bone Regeneration
    Andrey Vyacheslavovich Vasilyev, Irina Alekseevna Nedorubova, Viktoria Olegovna Chernomyrdina, Anastasiia Yurevna Meglei, Viktoriia Pavlovna Basina, Anton Vladimirovich Mironov, Valeriya Sergeevna Kuznetsova, Victoria Alexandrovna Sinelnikova, Olga Anatol
    International Journal of Molecular Sciences.2024; 25(24): 13300.     CrossRef
Journal Article
Genetically Engineered CLDN18.2 CAR-T Cells Expressing Synthetic PD1/CD28 Fusion Receptors Produced Using a Lentiviral Vector
Heon Ju Lee, Seo Jin Hwang, Eun Hee Jeong, Mi Hee Chang
J. Microbiol. 2024;62(7):555-568.   Published online May 3, 2024
DOI: https://doi.org/10.1007/s12275-024-00133-0
  • 81 View
  • 0 Download
AbstractAbstract
This study aimed to develop synthetic Claudin18.2 (CLDN18.2) chimeric antigen receptor (CAR)-T (CAR-T) cells as a treatment for advanced gastric cancer using lentiviral vector genetic engineering technology that targets the CLDN18.2 antigen and simultaneously overcomes the immunosuppressive environment caused by programmed cell death protein 1 (PD-1). Synthetic CAR T cells are a promising approach in cancer immunotherapy but face many challenges in solid tumors. One of the major problems is immunosuppression caused by PD-1. CLDN18.2, a gastric-specific membrane protein, is considered a potential therapeutic target for gastric and other cancers. In our study, CLDN18.2 CAR was a second-generation CAR with inducible T-cell costimulatory (CD278), and CLDN18.2-PD1/CD28 CAR was a third-generation CAR, wherein the synthetic PD1/CD28 chimeric-switch receptor (CSR) was added to the second-generation CAR. In vitro, we detected the secretion levels of different cytokines and the killing ability of CAR-T cells. We found that the secretion of cytokines such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) secreted by three types of CAR-T cells was increased, and the killing ability against CLDN18.2-positive GC cells was enhanced. In vivo, we established a xenograft GC model and observed the antitumor effects and off-target toxicity of CAR-T cells. These results support that synthetic anti-CLDN18.2 CAR-T cells have antitumor effect and anti-CLDN18.2-PD1/CD28 CAR could provide a promising design strategy to improve the efficacy of CAR-T cells in advanced gastric cancer.
Reviews
Metabolic Interaction Between Host and the Gut Microbiota During High‑Fat Diet‑Induced Colorectal Cancer
Chaeeun Lee, Seungrin Lee, Woongjae Yoo
J. Microbiol. 2024;62(3):153-165.   Published online April 16, 2024
DOI: https://doi.org/10.1007/s12275-024-00123-2
  • 45 View
  • 3 Download
  • 3 Web of Science
  • 5 Crossref
AbstractAbstract
Colorectal cancer (CRC) is the second-highest cause of cancer-associated mortality among both men and women worldwide. One of the risk factors for CRC is obesity, which is correlated with a high-fat diet prevalent in Western dietary habits. The association between an obesogenic high-fat diet and CRC has been established for several decades; however, the mechanisms by which a high-fat diet increases the risk of CRC remain unclear. Recent studies indicate that gut microbiota strongly infuence the pathogenesis of both high-fat diet-induced obesity and CRC. The gut microbiota is composed of hundreds of bacterial species, some of which are implicated in CRC. In particular, the expansion of facultative anaerobic Enterobacteriaceae, which is considered a microbial signature of intestinal microbiota functional imbalance (dysbiosis), is associated with both high-fat diet-induced obesity and CRC. Here, we review the interaction between the gut microbiome and its metabolic byproducts in the context of colorectal cancer (CRC) during high-fat diet-induced obesity. In addition, we will cover how a high-fat diet can drive the expansion of genotoxin-producing Escherichia coli by altering intestinal epithelial cell metabolism during gut infammation conditions.

Citations

Citations to this article as recorded by  
  • Wheat β-glucan reduces obesity and hyperlipidemia in mice with high-fat and high-salt diet by regulating intestinal flora
    Min Li, Qingshan Wang, Xiuwei Zhang, Kaikai Li, Meng Niu, Siming Zhao
    International Journal of Biological Macromolecules.2025; 288: 138754.     CrossRef
  • Microbial Metabolites-induced Epigenetic Modifications for Inhibition of Colorectal Cancer: Current Status and Future Perspectives
    Vaibhav Singh, Ekta Shirbhate, Rakesh Kore, Subham Vishwakarma, Shadiya Parveen, Ravichandran Veerasamy, Amit K Tiwari, Harish Rajak
    Mini-Reviews in Medicinal Chemistry.2025; 25(1): 76.     CrossRef
  • Molecular Mechanisms of Skatole-Induced Inflammatory Responses in Intestinal Epithelial Caco-2 Cells: Implications for Colorectal Cancer and Inflammatory Bowel Disease
    Katsunori Ishii, Kazuma Naito, Dai Tanaka, Yoshihito Koto, Koichi Kurata, Hidehisa Shimizu
    Cells.2024; 13(20): 1730.     CrossRef
  • Research Progress on the Relationship between Intestinal Flora and Gastrointestinal Malignancy
    军 陈
    Advances in Clinical Medicine.2024; 14(11): 262.     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
The Microbiome Matters: Its Impact on Cancer Development and Therapeutic Responses
In‑Young Chung, Jihyun Kim, Ara Koh
J. Microbiol. 2024;62(3):137-152.   Published online April 8, 2024
DOI: https://doi.org/10.1007/s12275-024-00110-7
  • 74 View
  • 4 Download
  • 2 Web of Science
  • 4 Crossref
AbstractAbstract
In the evolving landscape of cancer research, the human microbiome emerges as a pivotal determinant reshaping our understanding of tumorigenesis and therapeutic responses. Advanced sequencing technologies have uncovered a vibrant microbial community not confned to the gut but thriving within tumor tissues. Comprising bacteria, viruses, and fungi, this diverse microbiota displays distinct signatures across various cancers, with most research primarily focusing on bacteria. The correlations between specifc microbial taxa within diferent cancer types underscore their pivotal roles in driving tumorigenesis and infuencing therapeutic responses, particularly in chemotherapy and immunotherapy. This review amalgamates recent discoveries, emphasizing the translocation of the oral microbiome to the gut as a potential marker for microbiome dysbiosis across diverse cancer types and delves into potential mechanisms contributing to cancer promotion. Furthermore, it highlights the adverse efects of the microbiome on cancer development while exploring its potential in fortifying strategies for cancer prevention and treatment.

Citations

Citations to this article as recorded by  
  • COVID-19, Long COVID, and Gastrointestinal Neoplasms: Exploring the Impact of Gut Microbiota and Oncogenic Interactions
    do Rêgo Amália Cinthia Meneses, Araújo-Filho Irami
    Archives of Cancer Science and Therapy.2024; 8(1): 054.     CrossRef
  • Glycans in the oral bacteria and fungi: Shaping host-microbe interactions and human health
    Xiameng Ren, Min Wang, Jiabao Du, Yu Dai, Liuyi Dang, Zheng Li, Jian Shu
    International Journal of Biological Macromolecules.2024; 282: 136932.     CrossRef
  • A Review of the Relationship between Tumors of the Biliary System and Intestinal Microorganisms
    勇利 李
    Advances in Clinical Medicine.2024; 14(07): 833.     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
Journal Articles
Syntaxin17 Restores Lysosomal Function and Inhibits Pyroptosis Caused by Acinetobacter baumannii
Zhiyuan An, Wenyi Ding
J. Microbiol. 2024;62(4):315-325.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00109-0
  • 40 View
  • 0 Download
AbstractAbstract
Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1β, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1β, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.
The Revision of Lichen Flora Around Maxwell Bay, King George Island, Maritime Antarctic
Jae Eun So , Josef P. Halda , Soon Gyu Hong , Jae&# , Ji Hee Kim
J. Microbiol. 2023;61(2):159-173.   Published online February 27, 2023
DOI: https://doi.org/10.1007/s12275-023-00015-x
  • 36 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Since the floristic study of lichens at the Barton and Weaver Peninsulas of King George Island in 2006, there have been intense investigations of the lichen flora of the two peninsulas as well as that of Fildes Peninsula and Ardley Island in Maxwell Bay, King George Island, South Shetland Islands, maritime Antarctic. In this study, a total of 104 species belonging to 53 genera, are identified from investigations of lichens that were collected in austral summer seasons from 2008 to 2016. Phenotypic and molecular analyses were incorporated for taxonomic identification. In particular, 31 species are found to be endemic to the Antarctic and 22 species are newly recorded to the Maxwell Bay region. Lepra dactylina, Stereocaulon caespitosum, and Wahlenbergiella striatula are newly recorded in the Antarctic, and the previously reported taxon Cladonia furcata is excluded from the formerly recorded list due to misidentification. We also provide ecological and geographical information about lichen associations and habitat preferences.

Citations

Citations to this article as recorded by  
  • Lichens of Larsemann Hills and adjacent oases in the area of Prydz Bay (Princess Elizabeth Land and MacRobertson Land, Antarctica)
    Mikhail Andreev (Mихаил АНДРЕЕВ)
    Polar Science.2023; 38: 101009.     CrossRef
Functional analysis of ascP in Aeromonas veronii TH0426 reveals a key role in the regulation of virulence
Yongchao Guan , Meng Zhang , Yingda Wang , Zhongzhuo Liu , Zelin Zhao , Hong Wang , Dingjie An , Aidong Qian , Yuanhuan Kang , Wuwen Sun , Xiaofeng Shan
J. Microbiol. 2022;60(12):1153-1161.   Published online November 10, 2022
DOI: https://doi.org/10.1007/s12275-022-2373-8
  • 22 View
  • 0 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
Aeromonas veronii is a pathogen which can induce diseases in humans, animals and aquatic organisms, but its pathogenic mechanism and virulence factors are still elusive. In this study, we successfully constructed a mutant strain (ΔascP) by homologous recombination. The results showed that the deletion of the ascP gene significantly down-regulated the expression of associated effector proteins in A. veronii compared to its wild type. The adhesive and invasive abilities of ΔascP to EPC cells were 0.82-fold lower in contrast to the wild strain. The toxicity of ΔascP to cells was decreased by about 2.91-fold (1 h) and 1.74-fold (2 h). Furthermore, the LD50 of the mutant strain of crucian carp was reduced by 19.94-fold, and the virulence was considerably attenuated. In contrast to the wild strain, the ΔascP content in the liver and spleen was considerably lower. The titers of serum cytokines (IL-8, TNF-α, and IL-1β) in crucian carp after the infection of the ΔascP strain were considerably lower in contrast to the wild strain. Hence, the ascP gene is essential for the etiopathogenesis of A. veronii TH0426.

Citations

Citations to this article as recorded by  
  • Complete genome sequence and genome-wide transposon mutagenesis enable the determination of genes required for sodium hypochlorite tolerance and drug resistance in pathogen Aeromonas veronii GD2019
    Yifan Bu, Chengyu Liu, Yabo Liu, Wensong Yu, Tingjin Lv, Yuanxing Zhang, Qiyao Wang, Yue Ma, Shuai Shao
    Microbiological Research.2024; 284: 127731.     CrossRef
  • Construction of the flagellin F mutant of Vibrio parahaemolyticus and its toxic effects on silver pomfret (Pampus argenteus) cells
    Yang Li, Chao Liu, Yuechen Sun, Ruijun Wang, Choufei Wu, Hanqu Zhao, Liqin Zhang, Dawei Song, Quanxin Gao
    International Journal of Biological Macromolecules.2024; 259: 129395.     CrossRef
  • Ferric uptake regulator (fur) affects the pathogenicity of Aeromonas veronii TH0426 by regulating flagellar assembly and biofilm formation
    Jin-shuo Gong, Ying-da Wang, Yan-long Jiang, Di Zhang, Ya-nan Cai, Xiao-feng Shan, He Gong, Hao Dong
    Aquaculture.2024; 580: 740361.     CrossRef
Interaction between hypoviral-regulated fungal virulence factor laccase3 and small heat shock protein Hsp24 from the chestnut blight fungus Cryphonectria parasitica
Jeesun Chun† , Yo-Han Ko† , Dae-Hyuk Kim
J. Microbiol. 2022;60(1):57-62.   Published online November 26, 2021
DOI: https://doi.org/10.1007/s12275-022-1498-0
  • 29 View
  • 0 Download
  • 4 Web of Science
  • 3 Crossref
AbstractAbstract
Laccase3 is an important virulence factor of the fungus Cryphonectria parasitica. Laccase3 gene (lac3) transcription is induced by tannic acid, a group of phenolic compounds found in chestnut trees, and its induction is regulated by the hypovirus CHV1 infection. CpHsp24, a small heat shock protein gene of C. parasitica, plays a determinative role in stress adaptation and pathogen virulence. Having uncovered in our previous study that transcriptional regulation of the CpHsp24 gene in response to tannic acid supplementation and CHV1 infection was similar to that of the lac3, and that conserved phenotypic changes of reduced virulence were observed in mutants of both genes, we inferred that both genes were implicated in a common pathway. Building on this finding, in this paper we examined whether the CpHsp24 protein (CpHSP24) was a molecular chaperone for the lac3 protein (LAC3). Our pull-down experiment indicated that the protein products of the two genes directly interacted with each other. Heterologous co-expression of CpHsp24 and lac3 genes using Saccharomyces cerevisiae resulted in more laccase activity in the cotransformant than in a parental lac3-expresssing yeast strain. These findings suggest that CpHSP24 is, in fact, a molecular chaperone for the LAC3, which is critical component of fungal pathogenesis.

Citations

Citations to this article as recorded by  
  • Characteristics and expression of heat shock gene Lghsp17.4 in Lenzites gibbosa, a white rot fungus of wood
    Lianrong Feng, Yujie Chi, Jian Zhang, Xuxin Yang, Shuying Han
    Journal of Forestry Research.2024;[Epub]     CrossRef
  • Hypovirus infection induces proliferation and perturbs functions of mitochondria in the chestnut blight fungus
    Jinzi Wang, Rui Quan, Xipu He, Qiang Fu, Shigen Tian, Lijiu Zhao, Shuangcai Li, Liming Shi, Ru Li, Baoshan Chen
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Applying molecular and genetic methods to trees and their fungal communities
    Markus Müller, Ursula Kües, Katharina B. Budde, Oliver Gailing
    Applied Microbiology and Biotechnology.2023; 107(9): 2783.     CrossRef
Reviews
Rediscovery of antimicrobial peptides as therapeutic agents
Minkyung Ryu , Jaeyeong Park , Ji-Hyun Yeom , Minju Joo , Kangseok Lee
J. Microbiol. 2021;59(2):113-123.   Published online February 1, 2021
DOI: https://doi.org/10.1007/s12275-021-0649-z
  • 22 View
  • 0 Download
  • 25 Web of Science
  • 27 Crossref
AbstractAbstract
In recent years, the occurrence of antibiotic-resistant pathogens is increasing rapidly. There is growing concern as the development of antibiotics is slower than the increase in the resistance of pathogenic bacteria. Antimicrobial peptides (AMPs) are promising alternatives to antibiotics. Despite their name, which implies their antimicrobial activity, AMPs have recently been rediscovered as compounds having antifungal, antiviral, anticancer, antioxidant, and insecticidal effects. Moreover, many AMPs are relatively safe from toxic side effects and the generation of resistant microorganisms due to their target specificity and complexity of the mechanisms underlying their action. In this review, we summarize the history, classification, and mechanisms of action of AMPs, and provide descriptions of AMPs undergoing clinical trials. We also discuss the obstacles associated with the development of AMPs as therapeutic agents and recent strategies formulated to circumvent these obstacles.

Citations

Citations to this article as recorded by  
  • A stitch in time: Sustainable and eco-friendly solutions for kiwifruit bacterial canker
    Muhammad Asif, Shuang Liang, Hu RenJian, Xin Xie, Zhibo Zhao
    Physiological and Molecular Plant Pathology.2025; 136: 102506.     CrossRef
  • Mechanistic insights on the antibacterial action of the kyotorphin peptide derivatives revealed by in vitro studies and Galleria mellonella proteomic analysis
    Vitor M. de Andrade, Vitor D.M. de Oliveira, Uilla Barcick, Vasanthakumar G. Ramu, Montserrat Heras, Eduard R. Bardají, Miguel A.R.B. Castanho, André Zelanis, Aline Capella, Juliana C. Junqueira, Katia Conceição
    Microbial Pathogenesis.2024; 189: 106607.     CrossRef
  • Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria
    Raynichka Mihaylova-Garnizova, Slavena Davidova, Yordan Hodzhev, Galina Satchanska
    International Journal of Molecular Sciences.2024; 25(19): 10788.     CrossRef
  • A Zeolitic Imidazolate Framework-Based Antimicrobial Peptide Delivery System with Enhanced Anticancer Activity and Low Systemic Toxicity
    Jingwen Jiang, Kaderya Kaysar, Yanzhu Pan, Lijie Xia, Jinyao Li
    Pharmaceutics.2024; 16(12): 1591.     CrossRef
  • Enhancing Antimicrobial Peptide Activity through Modifications of Charge, Hydrophobicity, and Structure
    Przemysław Gagat, Michał Ostrówka, Anna Duda-Madej, Paweł Mackiewicz
    International Journal of Molecular Sciences.2024; 25(19): 10821.     CrossRef
  • Studies of antibacterial activity (in vitro and in vivo) and mode of action for des-acyl tridecaptins (DATs)
    Cédric Couturier, Quentin Ronzon, Giulia Lattanzi, Iain Lingard, Sebastien Coyne, Veronique Cazals, Nelly Dubarry, Stephane Yvon, Corinne Leroi-Geissler, Obdulia Rabal Gracia, Joanne Teague, Sylvie Sordello, David Corbett, Caroline Bauch, Chantal Monlong,
    European Journal of Medicinal Chemistry.2024; 265: 116097.     CrossRef
  • Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria
    Helal F. Hetta, Nizar Sirag, Shumukh M. Alsharif, Ahmad A. Alharbi, Tala T. Alkindy, Alanoud Alkhamali, Abdullah S. Albalawi, Yasmin N. Ramadan, Zainab I. Rashed, Fawaz E. Alanazi
    Pharmaceuticals.2024; 17(11): 1555.     CrossRef
  • Proteomic and antimicrobial peptide analyses of Buffalo colostrum and mature Milk whey: A comparative study
    Runfeng Liu, Yuan Yang, Yue Zhang, Qinqiang Sun, Pingchuan Zhu, Huiyan Xu, Wei Zheng, Yangqing Lu, Qiang Fu
    Food Chemistry.2024; 448: 139119.     CrossRef
  • Peptide Flexibility and the Hydrophobic Moment are Determinants to Evaluate the Clinical Potential of Magainins
    Daniel Balleza
    The Journal of Membrane Biology.2023; 256(4-6): 317.     CrossRef
  • Evaluation of glycyl-arginine and lysyl-aspartic acid dipeptides for their antimicrobial, antibiofilm, and anticancer potentials
    Handan Sevim Akan, Gülcan Şahal, Tuğçe Deniz Karaca, Özer Aylin Gürpınar, Meltem Maraş, Alev Doğan
    Archives of Microbiology.2023;[Epub]     CrossRef
  • The biological role of charge distribution in linear antimicrobial peptides
    Harry Morales Duque, Gisele Rodrigues, Lucas Souza Santos, Octávio Luiz Franco
    Expert Opinion on Drug Discovery.2023; 18(3): 287.     CrossRef
  • Discovery of Lactomodulin, a Unique Microbiome-Derived Peptide That Exhibits Dual Anti-Inflammatory and Antimicrobial Activity against Multidrug-Resistant Pathogens
    Walaa K. Mousa, Rose Ghemrawi, Tareq Abu-Izneid, Azza Ramadan, Farah Al-Marzooq
    International Journal of Molecular Sciences.2023; 24(8): 6901.     CrossRef
  • An injectable thermosensitive hydrogel with a self-assembled peptide coupled with an antimicrobial peptide for enhanced wound healing
    Tianqi Feng, Hongyan Wu, Wendi Ma, Zhaoguo Wang, Chunli Wang, Yilong Wang, Siyao Wang, Mei Zhang, Linlin Hao
    Journal of Materials Chemistry B.2022; 10(32): 6143.     CrossRef
  • Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells
    Amandda Évelin Silva-Carvalho, Marlon Henrique Cardoso, Thuany Alencar-Silva, Gabriela Muller Reche Bogéa, Juliana Lott Carvalho, Octávio Luiz Franco, Felipe Saldanha-Araujo
    Pharmacology & Therapeutics.2022; 233: 108021.     CrossRef
  • A Solid Support‐Based Synthetic Strategy for the Site‐Selective Functionalization of Peptides with Organometallic Half‐Sandwich Moieties
    Dianna Truong, Nelson Y. S. Lam, Meder Kamalov, Mie Riisom, Stephen M. F. Jamieson, Paul W. R. Harris, Margaret A. Brimble, Nils Metzler‐Nolte, Christian G. Hartinger
    Chemistry – A European Journal.2022;[Epub]     CrossRef
  • Bacteria-derived chimeric toxins as potential anticancer agents
    Saeed Khoshnood, Hadis Fathizadeh, Foroogh Neamati, Babak Negahdari, Piyush Baindara, Mohd Azmuddin Abdullah, Mohammad Hossein Haddadi
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Identification of antimicrobial peptides from the human gut microbiome using deep learning
    Yue Ma, Zhengyan Guo, Binbin Xia, Yuwei Zhang, Xiaolin Liu, Ying Yu, Na Tang, Xiaomei Tong, Min Wang, Xin Ye, Jie Feng, Yihua Chen, Jun Wang
    Nature Biotechnology.2022; 40(6): 921.     CrossRef
  • Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model
    Xiujin Wu, Wenhua Zeng, Fan Lin, Peng Xu, Xinzhu Li
    Frontiers in Genetics.2022;[Epub]     CrossRef
  • Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms
    Tania Vanzolini, Michela Bruschi, Andrea C. Rinaldi, Mauro Magnani, Alessandra Fraternale
    International Journal of Molecular Sciences.2022; 23(1): 545.     CrossRef
  • Gold nanoparticle-DNA aptamer-assisted delivery of antimicrobial peptide effectively inhibits Acinetobacter baumannii infection in mice
    Jaeyeong Park, Eunkyoung Shin, Ji-Hyun Yeom, Younkyung Choi, Minju Joo, Minho Lee, Je Hyeong Kim, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(1): 128.     CrossRef
  • Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections
    Irina Negut, Bogdan Bita, Andreea Groza
    Polymers.2022; 14(8): 1611.     CrossRef
  • Development of DNA aptamers specific for small therapeutic peptides using a modified SELEX method
    Jaemin Lee, Minkyung Ryu, Dayeong Bae, Hong-Man Kim, Seong-il Eyun, Jeehyeon Bae, Kangseok Lee
    Journal of Microbiology.2022; 60(7): 659.     CrossRef
  • In Vivo Behavior of the Antibacterial Peptide Cyclo[RRRWFW], Explored Using a 3-Hydroxychromone-Derived Fluorescent Amino Acid
    Sergii Afonin, Serhii Koniev, Laetitia Préau, Masanari Takamiya, Alexander V. Strizhak, Oleg Babii, Andrii Hrebonkin, Vasyl G. Pivovarenko, Margitta Dathe, Ferdinand le Noble, Sepand Rastegar, Uwe Strähle, Anne S. Ulrich, Igor V. Komarov
    Frontiers in Chemistry.2021;[Epub]     CrossRef
  • Preliminary Study on the Antibacterial and Cytotoxic Effects of the Synthetic New Peptide NJP9-A
    Kai Ren, Xiumei Chi, Tiange Wu, Mujie Kan, Jiankai Liu, Jiayue Cui
    International Journal of Peptide Research and Therapeutics.2021; 27(4): 2199.     CrossRef
  • Lysozyme-like Protein Produced by Bifidobacterium longum Regulates Human Gut Microbiota Using In Vitro Models
    Mingzhu Du, Xinqiang Xie, Shuanghong Yang, Ying Li, Tong Jiang, Juan Yang, Longyan Li, Yunxiao Huang, Qingping Wu, Wei Chen, Jumei Zhang
    Molecules.2021; 26(21): 6480.     CrossRef
  • Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome
    Pasquale Marrazzo, Valeria Pizzuti, Silvia Zia, Azzurra Sargenti, Daniele Gazzola, Barbara Roda, Laura Bonsi, Francesco Alviano
    Antibiotics.2021; 10(7): 750.     CrossRef
  • Therapeutic Effect of an Antibody-Derived Peptide in a Galleria mellonella Model of Systemic Candidiasis
    Emerenziana Ottaviano, Elisa Borghi, Laura Giovati, Monica Falleni, Delfina Tosi, Walter Magliani, Giulia Morace, Stefania Conti, Tecla Ciociola
    International Journal of Molecular Sciences.2021; 22(20): 10904.     CrossRef
[MINIREVIEW]Regulation of gene expression by protein lysine acetylation in Salmonella
Hyojeong Koo , Shinae Park , Min-Kyu Kwak , Jung-Shin Lee
J. Microbiol. 2020;58(12):979-987.   Published online November 17, 2020
DOI: https://doi.org/10.1007/s12275-020-0483-8
  • 23 View
  • 0 Download
  • 14 Web of Science
  • 13 Crossref
AbstractAbstract
Protein lysine acetylation influences many physiological functions, such as gene regulation, metabolism, and disease in eukaryotes. Although little is known about the role of lysine acetylation in bacteria, several reports have proposed its importance in various cellular processes. Here, we discussed the function of the protein lysine acetylation and the post-translational modifications (PTMs) of histone-like proteins in bacteria focusing on Salmonella pathogenicity. The protein lysine residue in Salmonella is acetylated by the Pat-mediated enzymatic pathway or by the acetyl phosphate-mediated non-enzymatic pathway. In Salmonella, the acetylation of lysine 102 and lysine 201 on PhoP inhibits its protein activity and DNAbinding, respectively. Lysine acetylation of the transcriptional regulator, HilD, also inhibits pathogenic gene expression. Moreover, it has been reported that the protein acetylation patterns significantly differ in the drug-resistant and -sensitive Salmonella strains. In addition, nucleoid-associated proteins such as histone-like nucleoid structuring protein (H-NS) are critical for the gene silencing in bacteria, and PTMs in H-NS also affect the gene expression. In this review, we suggest that protein lysine acetylation and the post-translational modifications of H-NS are important factors in understanding the regulation of gene expression responsible for pathogenicity in Salmonella.

Citations

Citations to this article as recorded by  
  • Bacterial protein acetylation: mechanisms, functions, and methods for study
    Jocelin Rizo, Sergio Encarnación-Guevara
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Acetyl-proteome profiling revealed the role of lysine acetylation in erythromycin resistance of Staphylococcus aureus
    Miao Feng, Xiaoyu Yi, Yanling Feng, Feng He, Zonghui Xiao, Hailan Yao
    Heliyon.2024; 10(15): e35326.     CrossRef
  • Short-chain fatty acids in breast milk and their relationship with the infant gut microbiota
    Menglu Xi, Yalu Yan, Sufang Duan, Ting Li, Ignatius Man-Yau Szeto, Ai Zhao
    Frontiers in Microbiology.2024;[Epub]     CrossRef
  • Global Insights into the Lysine Acetylome Reveal the Role of Lysine Acetylation in the Adaptation of Bacillus altitudinis to Salt Stress
    Xujian Li, Shanshan Dai, Shanshan Sun, Dongying Zhao, Hui Li, Junyi Zhang, Jie Ma, Binghai Du, Yanqin Ding
    Journal of Proteome Research.2024;[Epub]     CrossRef
  • Acetylomics reveals an extensive acetylation diversity within Pseudomonas aeruginosa
    Nand Broeckaert, Hannelore Longin, Hanne Hendrix, Jeroen De Smet, Mirita Franz-Wachtel, Boris Maček, Vera van Noort, Rob Lavigne
    microLife.2024;[Epub]     CrossRef
  • Lysine acetylation regulates the AT-rich DNA possession ability of H-NS
    Yabo Liu, Mengqing Zhou, Yifan Bu, Liang Qin, Yuanxing Zhang, Shuai Shao, Qiyao Wang
    Nucleic Acids Research.2024; 52(4): 1645.     CrossRef
  • Acetylation of K188 and K192 inhibits the DNA-binding ability of NarL to regulate Salmonella virulence
    Liu-Qing Zhang, Yi-Lin Shen, Bang-Ce Ye, Ying Zhou, Christopher A. Elkins
    Applied and Environmental Microbiology.2023;[Epub]     CrossRef
  • Acetylome and Succinylome Profiling of Edwardsiella tarda Reveals Key Roles of Both Lysine Acylations in Bacterial Antibiotic Resistance
    Yuying Fu, Lishan Zhang, Huanhuan Song, Junyan Liao, Li Lin, Wenjia Jiang, Xiaoyun Wu, Guibin Wang
    Antibiotics.2022; 11(7): 841.     CrossRef
  • Pat- and Pta-mediated protein acetylation is required for horizontally-acquired virulence gene expression in Salmonella Typhimurium
    Hyojeong Koo, Eunna Choi, Shinae Park, Eun-Jin Lee, Jung-Shin Lee
    Journal of Microbiology.2022; 60(8): 823.     CrossRef
  • Acetylation of CspC Controls the Las Quorum-Sensing System through Translational Regulation of rsaL in Pseudomonas aeruginosa
    Shouyi Li, Xuetao Gong, Liwen Yin, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Un-Hwan Ha, Weihui Wu, Pierre Cornelis, Gerald B. Pier
    mBio.2022;[Epub]     CrossRef
  • Trans-acting regulators of ribonuclease activity
    Jaejin Lee, Minho Lee, Kangseok Lee
    Journal of Microbiology.2021; 59(4): 341.     CrossRef
  • Acetylation of the CspA family protein CspC controls the type III secretion system through translational regulation ofexsAinPseudomonas aeruginosa
    Shouyi Li, Yuding Weng, Xiaoxiao Li, Zhuo Yue, Zhouyi Chai, Xinxin Zhang, Xuetao Gong, Xiaolei Pan, Yongxin Jin, Fang Bai, Zhihui Cheng, Weihui Wu
    Nucleic Acids Research.2021; 49(12): 6756.     CrossRef
  • Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella—A Review
    Michał Wójcicki, Olga Świder, Kamila J. Daniluk, Paulina Średnicka, Monika Akimowicz, Marek Ł. Roszko, Barbara Sokołowska, Edyta Juszczuk-Kubiak
    Pathogens.2021; 10(7): 801.     CrossRef
Journal Article
Evolutionary analysis and protein family classification of chitin deacetylases in Cryptococcus neoformans
Seungsue Lee , Hyun Ah Kang , Seong-il Eyun
J. Microbiol. 2020;58(9):805-811.   Published online September 1, 2020
DOI: https://doi.org/10.1007/s12275-020-0288-9
  • 30 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Cryptococcus neoformans is an opportunistic fungal pathogen causing cryptococcal meningoencephalitis. Interestingly, the cell wall of C. neoformans contains chitosan, which is critical for its virulence and persistence in the mammalian host. C. neoformans (H99) has three chitin deacetylases (CDAs), which convert chitin to chitosan. Herein, the classification of the chitin-related protein (CRP) family focused on cryptococcal CDAs was analyzed by phylogenetics, evolutionary pressure (dN/dS), and 3D modeling. A phylogenetic tree of 110 CRPs revealed that they can be divided into two clades, CRP I and II with bootstrap values (> 99%). CRP I clade comprises five groups (Groups 1–5) with a total of 20 genes, while CRP II clade comprises sixteen groups (Groups 6–21) with a total of 90 genes. CRP I comprises only fungal CDAs, including all three C. neoformans CDAs, whereas CRP II comprises diverse CDAs from fungi, bacteria, and amoeba, along with other carbohydrate esterase 4 family proteins. All CDAs have the signal peptide, except those from group 11. Notably, CDAs with the putative O-glycosylation site possess either the glycosylphosphatidylinositol (GPI)-anchor motif for CRP I or the chitin-binding domain (CBD) for CRP II, respectively. This evolutionary conservation strongly indicates that the O-glycosylation modification and the presence of either the GPI-anchor motif or the chitin-binding domain is important for fungal CDAs to function efficiently at the cell surface. This study reveals that C. neoformans CDAs carrying GPI anchors have evolved divergently from fungal and bacterial CDAs, providing new insights into evolution and classification of CRP family.

Citations

Citations to this article as recorded by  
  • Chitin Deacetylase Homologous Gene cda Contributes to Development and Aflatoxin Synthesis in Aspergillus flavus
    Xin Zhang, Meifang Wen, Guoqi Li, Shihua Wang
    Toxins.2024; 16(5): 217.     CrossRef
  • Effects of altered N-glycan structures of Cryptococcus neoformans mannoproteins, MP98 (Cda2) and MP84 (Cda3), on interaction with host cells
    Su-Bin Lee, Catia Mota, Eun Jung Thak, Jungho Kim, Ye Ji Son, Doo-Byoung Oh, Hyun Ah Kang
    Scientific Reports.2023;[Epub]     CrossRef
  • Novel Chitin Deacetylase from Thalassiosira weissflogii Highlights the Potential for Chitin Derivative Production
    Mengzhen Cheng, Zhanru Shao, Xin Wang, Chang Lu, Shuang Li, Delin Duan
    Metabolites.2023; 13(3): 429.     CrossRef
  • Identification and Phylogenetic Analysis of Chitin Synthase Genes from the Deep-Sea Polychaete Branchipolynoe onnuriensis Genome
    Hyeongwoo Choi, Sang Lyeol Kim, Man-Ki Jeong, Ok Hwan Yu, Seongil Eyun
    Journal of Marine Science and Engineering.2022; 10(5): 598.     CrossRef
Review
MINIREVIEW] Synthetic lethal interaction between oxidative stress response and DNA damage repair in the budding yeast and its application to targeted anticancer therapy
Ji Eun Choi , Woo-Hyun Chung
J. Microbiol. 2019;57(1):9-17.   Published online December 29, 2018
DOI: https://doi.org/10.1007/s12275-019-8475-2
  • 25 View
  • 0 Download
  • 6 Web of Science
  • 6 Crossref
AbstractAbstract
Synthetic lethality is an extreme form of negative genetic epistasis that arises when a combination of functional deficiency in two or more genes results in cell death, whereas none of the single genetic perturbations are lethal by themselves. This unconventional genetic interaction is a modification of the concept of essentiality that can be exploited for the purpose of targeted cancer therapy. The yeast Saccharomyces cerevisiae has been pivotally used for early large-scale synthetic lethal screens due to its experimental advantages, but recent advances in gene silencing technology have now made direct high-throughput analysis possible in higher organisms. Identification of tumor-specific alterations and characterization of the mechanistic principles underlying synthetic lethal interaction are the key to applying synthetic lethality to clinical cancer treatment by enabling genome-driven oncological research. Here, we provide emerging ideas on the synthetic lethal interactions in budding yeast, particularly between cellular processes responsible for oxidative stress response and DNA damage repair, and discuss how they can be appropriately utilized for context-dependent cancer therapeutics.

Citations

Citations to this article as recorded by  
  • CSSLdb: Discovery of cancer-specific synthetic lethal interactions based on machine learning and statistic inference
    Yuyang Dou, Yujie Ren, Xinmiao Zhao, Jiaming Jin, Shizheng Xiong, Lulu Luo, Xinru Xu, Xueni Yang, Jiafeng Yu, Li Guo, Tingming Liang
    Computers in Biology and Medicine.2024; 170: 108066.     CrossRef
  • ML216-Induced BLM Helicase Inhibition Sensitizes PCa Cells to the DNA-Crosslinking Agent Cisplatin
    Xiao-Yan Ma, Jia-Fu Zhao, Yong Ruan, Wang-Ming Zhang, Lun-Qing Zhang, Zheng-Dong Cai, Hou-Qiang Xu
    Molecules.2022; 27(24): 8790.     CrossRef
  • Clinical significance of chromosomal integrity in gastric cancers
    Rukui Zhang, Zhaorui Liu, Xusheng Chang, Yuan Gao, Huan Han, Xiaona Liu, Hui Cai, Qiqing Fu, Lei Liu, Kai Yin
    The International Journal of Biological Markers.2022; 37(3): 296.     CrossRef
  • Functional interplay between the oxidative stress response and DNA damage checkpoint signaling for genome maintenance in aerobic organisms
    Ji Eun Choi, Woo-Hyun Chung
    Journal of Microbiology.2020; 58(2): 81.     CrossRef
  • Genetic interactions derived from high-throughput phenotyping of 6589 yeast cell cycle mutants
    Jenna E. Gallegos, Neil R. Adames, Mark F. Rogers, Pavel Kraikivski, Aubrey Ibele, Kevin Nurzynski-Loth, Eric Kudlow, T. M. Murali, John J. Tyson, Jean Peccoud
    npj Systems Biology and Applications.2020;[Epub]     CrossRef
  • DNA damage induces Yap5-dependent transcription of ECO1/CTF7 in Saccharomyces cerevisiae
    Michael G. Mfarej, Robert V. Skibbens, Marco Muzi-Falconi
    PLOS ONE.2020; 15(12): e0242968.     CrossRef
Journal Articles
Composition and abundance of microbiota in the pharynx in patients with laryngeal carcinoma and vocal cord polyps
Hongli Gong , Boyan Wang , Yi Shi , Yong Shi , Xiyan Xiao , Pengyu Cao , Lei Tao , Yuezhu Wang , Liang Zhou
J. Microbiol. 2017;55(8):648-654.   Published online July 28, 2017
DOI: https://doi.org/10.1007/s12275-017-6636-8
  • 22 View
  • 0 Download
  • 13 Crossref
AbstractAbstract
The pharynx is an important site of microbiota colonization, but the bacterial populations at this site have been relatively unexplored by culture-independent approaches. The aim of this study was to characterize the microbiota structure of the pharynx. Pyrosequencing of 16S rRNA gene libraries was used to characterize the pharyngeal microbiota using swab samples from 68 subjects with laryngeal cancer and 28 subjects with vocal cord polyps. Overall, the major phylum was Firmicutes, with Streptococcus as the predominant genus in the pharyngeal communities. Nine core operational taxonomic units detected from Streptococcus, Fusobacterium, Prevotella, Granulicatella, and Veillonella accounted for 21.3% of the total sequences detected. However, there was no difference in bacterial communities in the pharynx from patients with laryngeal cancer and vocal cord polyps. The relative abundance of Firmicutes was inversely correlated with Fusobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. The correlation was evident at the genus level, and the relative abundance of Streptococcus was inversely associated with Fusobacterium, Leptotrichia, Neisseria, Actinomyces, and Prevotella. This study presented a profile for the overall structure of the microbiota in pharyngeal swab samples. Inverse correlations were found between Streptococcus and other bacterial communities, suggesting that potential antagonism may exist among pharyngeal microbiota.

Citations

Citations to this article as recorded by  
  • Effects of squamous cell carcinoma and smoking status on oropharyngeal and laryngeal microbial communities
    Maximilian Oberste, Brit Elisabeth Böse, Luis Gustavo dos Anjos Borges, Howard Junca, Iris Plumeier, Silke Kahl, Frank Simon, Achim Georg Beule, Claudia Rudack, Dietmar H. Pieper
    Head & Neck.2024; 46(1): 145.     CrossRef
  • Comparison of the bacterial microbiome in the pharynx and nasal cavity of persistent, intermittent carriers and non-carriers of Staphylococcus aureus
    Samuel González-García, Aida Hamdan-Partida, Julia Pérez-Ramos, José Félix Aguirre-Garrido, Anaíd Bustos-Hamdan, Jaime Bustos-Martínez
    Journal of Medical Microbiology .2024;[Epub]     CrossRef
  • Fusobacterium nucleatum impairs DNA mismatch repair and stability in patients with squamous cell carcinoma of the head and neck
    Chi‐Yao Hsueh, Hui‐Ching Lau, Qiang Huang, Hongli Gong, Ji Sun, Pengyu Cao, Chunyan Hu, Ming Zhang, Lei Tao, Liang Zhou
    Cancer.2022; 128(17): 3170.     CrossRef
  • Raman fl uorescence technologies for early detection of infl ammatory and oncological disorders as a part of public health strategy and a tool for improving the quality of medical care: a review
    A. B. Timurzieva
    Laser Medicine.2022; 25(4): 42.     CrossRef
  • Cross-comparison of microbiota in the oropharynx, hypopharyngeal squamous cell carcinoma and their adjacent tissues through quantitative microbiome profiling
    Hui-Ching Lau, Yujie Shen, Huiying Huang, Xiaohui Yuan, Mengyou Ji, Hongli Gong, Chi-Yao Hsueh, Liang Zhou
    Journal of Oral Microbiology.2022;[Epub]     CrossRef
  • Oral microbiota in oropharyngeal cancers: Friend or foe?
    Riccardo Nocini, Lorenzo Lo Muzio, Davide Gibellini, Giovanni Malerba, Michele Milella, Salvatore Chirumbolo, Nicoletta Zerman
    Frontiers in Oncology.2022;[Epub]     CrossRef
  • Oropharynx microbiota transitions in hypopharyngeal carcinoma treatment of induced chemotherapy followed by surgery
    Hui-Ching Lau, Chi-Yao Hsueh, Hongli Gong, Ji Sun, Hui-Ying Huang, Ming Zhang, Liang Zhou
    BMC Microbiology.2021;[Epub]     CrossRef
  • The Role of Bacterial and Fungal Human Respiratory Microbiota in COVID-19 Patients
    Saber Soltani, Armin Zakeri, Milad Zandi, Mina Mobini Kesheh, Alireza Tabibzadeh, Mahsa Dastranj, Samireh Faramarzi, Mojtaba Didehdar, Hossein Hafezi, Parastoo Hosseini, Abbas Farahani, Cassiano Felippe Gonçalves-de-Albuquerque
    BioMed Research International.2021; 2021: 1.     CrossRef
  • Selective Bacterial Colonization of the Murine Larynx in a Gnotobiotic Model
    Ran An, Madhu Gowda, Federico E. Rey, Susan L. Thibeault
    Frontiers in Microbiology.2020;[Epub]     CrossRef
  • Throat Microbial Community Structure and Functional Changes in Postsurgery Laryngeal Carcinoma Patients
    Chi-Yao Hsueh, Hongli Gong, Ning Cong, Ji Sun, Hui-Ching Lau, Yang Guo, Qiang Huang, Xiaohui Yuan, Ming Zhang, Lei Tao, Liang Zhou, Harold L. Drake
    Applied and Environmental Microbiology.2020;[Epub]     CrossRef
  • Fusobacterium spp. target human CEACAM1 via the trimeric autotransporter adhesin CbpF
    Matthew L. Brewer, David Dymock, R. Leo Brady, Bernhard B. Singer, Mumtaz Virji, Darryl J. Hill
    Journal of Oral Microbiology.2019; 11(1): 1565043.     CrossRef
  • Quality and metagenomic evaluation of a novel functional beverage produced from soy whey using water kefir grains
    Chuanhai Tu, Fidelis Azi, Jin Huang, Xiao Xu, Guangliang Xing, Mingsheng Dong
    LWT.2019; 113: 108258.     CrossRef
  • Potential role of microbiome in oncogenesis, outcome prediction and therapeutic targeting for head and neck cancer
    Ester Orlandi, Nicola Alessandro Iacovelli, Vincenzo Tombolini, Tiziana Rancati, Antonella Polimeni, Loris De Cecco, Riccardo Valdagni, Francesca De Felice
    Oral Oncology.2019; 99: 104453.     CrossRef
Latent Kaposi’s sarcoma-associated herpesvirus infection in bladder cancer cells promotes drug resistance by reducing reactive oxygen species
Suhyuk Lee , Jaehyuk Jang , Hyungtaek Jeon , Jisu Lee , Seung-Min Yoo , Jinsung Park , Myung-Shin Lee
J. Microbiol. 2016;54(11):782-788.   Published online October 29, 2016
DOI: https://doi.org/10.1007/s12275-016-6388-x
  • 22 View
  • 0 Download
  • 7 Crossref
AbstractAbstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the major etiologic agent of Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease. Recent studies have indicated that KSHV can be detected at high frequency in patient-derived bladder cancer tissue and might be associated with the pathogenesis of bladder cancer. Bladder cancer is the second most common cancer of the genitourinary tract, and it has a high rate of recurrence. Because drug resistance is closely related to chemotherapy failure and cancer recurrence, we investigated whether KSHV infection is associated with drug resistance of bladder cancer cells. Some KSHV-infected bladder cancer cell lines showed resistance to an anti-cancer drug, cisplatin, possibly as a result of downregulation of reactive oxygen species. Additionally, drug resistance acquired from KSHV infection could partly be overcome by HDAC1 inhibitors. Taken together, the data suggest the possible role of KSHV in chemo-resistant bladder cancer, and indicate the therapeutic potential of HDAC1 inhibitors in drug-resistant bladder cancers associated with KSHV infection.

Citations

Citations to this article as recorded by  
  • Development of KSHV vaccine platforms and chimeric MHV68-K-K8.1 glycoprotein for evaluating the in vivo immunogenicity and efficacy of KSHV vaccine candidates
    Wan-Shan Yang, Dokyun Kim, Soowon Kang, Chih-Jen Lai, Inho Cha, Pei-Ching Chang, Jae U. Jung, Satya Dandekar
    mBio.2024;[Epub]     CrossRef
  • Genomic analysis of schistosomiasis-associated colorectal cancer reveals a unique mutational landscape and therapeutic implications
    Dong Yu, Anqi Wang, Jing Zhang, Xinxing Li, Caifeng Jiang, Haiyang Zhou
    Genes & Diseases.2023; 10(3): 657.     CrossRef
  • Revisiting Histone Deacetylases in Human Tumorigenesis: The Paradigm of Urothelial Bladder Cancer
    Aikaterini F. Giannopoulou, Athanassios D. Velentzas, Eumorphia G. Konstantakou, Margaritis Avgeris, Stamatia A. Katarachia, Nikos C. Papandreou, Nikolas I. Kalavros, Vassiliki E. Mpakou, Vassiliki Iconomidou, Ema Anastasiadou, Ioannis K. Kostakis, Issido
    International Journal of Molecular Sciences.2019; 20(6): 1291.     CrossRef
  • Hepatitis C Virus-Induced FUT8 Causes 5-FU Drug Resistance in Human Hepatoma Huh7.5.1 Cells
    Shu Li, Xiao-Yu Liu, Qiu Pan, Jian Wu, Zhi-Hao Liu, Yong Wang, Min Liu, Xiao-Lian Zhang
    Viruses.2019; 11(4): 378.     CrossRef
  • Mechanistic Insights into Chemoresistance Mediated by Oncogenic Viruses in Lymphomas
    Jungang Chen, Samantha Kendrick, Zhiqiang Qin
    Viruses.2019; 11(12): 1161.     CrossRef
  • Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas
    Sangmin Kang, Jinjong Myoung
    Journal of Microbiology.2017; 55(5): 319.     CrossRef
  • Chitin Oligosaccharide (COS) Reduces Antibiotics Dose and Prevents Antibiotics-Caused Side Effects in Adolescent Idiopathic Scoliosis (AIS) Patients with Spinal Fusion Surgery
    Yang Qu, Jinyu Xu, Haohan Zhou, Rongpeng Dong, Mingyang Kang, Jianwu Zhao
    Marine Drugs.2017; 15(3): 70.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP