Extracellular vesicles derived from probiotics have received considerable attention for their pivotal role in bacterial‒host communication. These nanosized, bilayer-encapsulated vesicles carry diverse bioactive molecules, such as proteins, lipids, nucleic acids, and metabolites. Currently, ample evidence has emerged that probiotic extracellular vesicles may modulate several processes of host physiological hemostasis and offer therapeutic benefits. This review examines the biogenesis, composition, and immunomodulatory functions of probiotic-derived extracellular vesicles in probiotic–host interactions, highlighting the therapeutic potential of probiotic extracellular vesicles in the diagnosis and treatment of conditions such as cancer and inflammatory bowel disease. We further summarize the techniques for the separation and purification of extracellular vesicles, providing a methodological foundation for future research and applications. Although the field of probiotic extracellular vesicle research is still in its infancy, the prospects for their application in the biomedical field are broad, potentially emerging as a novel therapeutic approach.
Citations
Korean Red ginseng has emerged as a potent candidate in the fight against various viral infections, demonstrating significant efficacy both in vitro and in vivo, particularly against influenza A viruses. Despite substantial evidence of its antiviral properties, the detailed molecular mechanisms through which it reduces viral lethality remain insufficiently understood. Our investigations have highlighted the superior effectiveness of Korean Red ginseng against influenza viruses, outperforming its effects on numerous other viral strains. We aim to uncover the specific mechanisms by which Korean Red ginseng exerts its antiviral effects, focusing on influenza A viruses. Our prior studies have identified the role of Z-DNA-binding protein 1 (ZBP1), a signaling complex involved in inducing programmed cell death in response to influenza virus infection. Given the critical role of ZBP1 as a sensor for viral nucleic acid, we hypothesize that Korean Red ginseng may modulate the ZBP1-derived cell death pathway. This interaction is anticipated to enhance cell death while concurrently suppressing viral protein expression, offering novel insights into the antiviral mechanism of Korean Red ginseng against influenza A viruses.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations