Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
117 "lysis"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Minireview
Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data
Sungwon Jung
J. Microbiol. 2025;63(1):e.2411006.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2411006
  • 575 View
  • 71 Download
AbstractAbstract PDF

This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.

Journal Article
Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli
Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung
J. Microbiol. 2024;62(11):1023-1033.   Published online October 28, 2024
DOI: https://doi.org/10.1007/s12275-024-00175-4
  • 83 View
  • 0 Download
AbstractAbstract
Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower KM and a 1.49-fold higher turnover rate (kcat/KM) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/gxylose (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.
Review
Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis
Anyeseu Park, Chanhee Lee, Jeong Yoon Lee
J. Microbiol. 2024;62(5):393-407.   Published online March 7, 2024
DOI: https://doi.org/10.1007/s12275-024-00112-5
  • 66 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.

Citations

Citations to this article as recorded by  
  • In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D
    Chanhee Lee, Anyeseu Park, Jeong Yoon Lee
    Journal of Microbiology.2024; 62(5): 409.     CrossRef
Journal Articles
Prevalence of Indigenous Antibiotic‑Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra‑Broad Specificity
Jaein Choe , Su-Hyeon Kim , Ji Min Han , Jong-Hoon Kim , Mi-Sun Kwak , Do-Won Jeong , Mi-Kyung Park
J. Microbiol. 2023;61(12):1063-1073.   Published online January 2, 2024
DOI: https://doi.org/10.1007/s12275-023-00098-6
  • 57 View
  • 0 Download
AbstractAbstract
The consumption of fresh produce has led to increase in antibiotic-resistant (AR) Salmonella outbreaks. In this study, indigenous Salmonella was isolated from a total of two hundred-two samples including fresh produce and agricultural environmental samples in Korea. After biochemical confirmation using the Indole, Methyl Red, Voges-Proskauer, Citrate tests, presumable Salmonella isolates were identified by 16S rRNA sequencing. Identified Salmonella isolates were evaluated for antibiotic susceptibility against twenty-two antibiotics. The specificity and the efficiency of plating (EOP) of vB_SalS_KFSSM were evaluated against fifty-three bacterial strains. Twenty-five suspected Salmonella were isolated and confirmed by the positive
result
for methyl red and citrate, of which ten were identified as Salmonella spp. through 16S rRNA gene sequencing. Eight Salmonella isolates (4.0%, n = 8/202) were resistant to at least one antibiotic, among which five were multi-drug resistant. As a lytic phage against Salmonella spp. CMGS-1, vB_SalS_KFSSM was isolated from cow manure. The phage was observed as a tailed phage belonging to the class Caudoviricetes. It exhibited an intra-broad specificity against four indigenous AR Salmonella isolates, two indigenous Salmonella isolates, and five other Salmonella serotypes with great efficiencies (EOP ≥ 0.75). Thus, this study suggested the potential of vB_SalS_KFSSM to combat indigenous AR Salmonella.
Structural and Functional Analyses of the Flavoprotein Disulfide Reductase FN0820 of Fusobacterium nucleatum
Hyunwoo Shin , Yeongjin Baek , Dukwon Lee , Yongbin Xu , Yonghoon Kwon , Inseong Jo , Nam-Chul Ha
J. Microbiol. 2023;61(12):1033-1041.   Published online December 20, 2023
DOI: https://doi.org/10.1007/s12275-023-00095-9
  • 68 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response. Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I FDR family, exhibited a higher activity of a Cu2+- dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog 5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results have implications for developing new treatment strategies against pathogens that defend the host immune response with Group I FDRs.

Citations

Citations to this article as recorded by  
  • The role of metals in hypothiocyanite resistance in Escherichia coli
    Michael J. Gray, Laurie E. Comstock
    Journal of Bacteriology.2024;[Epub]     CrossRef
Fresh Washed Microbiota Transplantation Alters Gut Microbiota Metabolites to Ameliorate Sleeping Disorder Symptom of Autistic Children
Nai-Hua Liu , Hong-Qian Liu , Jia-Yi Zheng , Meng-Lu Zhu , Li-Hao Wu , Hua-Feng Pan , Xing-Xiang He
J. Microbiol. 2023;61(8):741-753.   Published online September 4, 2023
DOI: https://doi.org/10.1007/s12275-023-00069-x
  • 55 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract
Accumulating studies have raised concerns about gut dysbiosis associating autism spectrum disorder (ASD) and its related symptoms. However, the effect of gut microbiota modification on the Chinese ASD population and its underlying mechanism were still elusive. Herein, we enrolled 24 ASD children to perform the first course of fresh washed microbiota transplantation (WMT), 18 patients decided to participate the second course, 13 of which stayed to participate the third course, and there were 8 patients at the fourth course. Then we evaluated the effects of fresh WMT on these patients and their related symptoms. Our results found that the sleeping disorder symptom was positively interrelated to ASD, fresh WMT significantly alleviated ASD and its sleeping disorder and constipation symptoms. In addition, WMT stably and continuously downregulated Bacteroides/ Flavonifractor/Parasutterella while upregulated Prevotella_9 to decrease toxic metabolic production and improve detoxification by regulating glycolysis/myo-inositol/D-glucuronide/D-glucarate degradation, L-1,2-propanediol degradation, fatty acid β-oxidation. Thus, our results suggested that fresh WMT moderated gut microbiome to improve the behavioral and sleeping disorder symptoms of ASD via decrease toxic metabolic production and improve detoxification. Which thus provides a promising gut ecological strategy for ASD children and its related symptoms treatments.

Citations

Citations to this article as recorded by  
  • Untargeted urine metabolomics and machine learning provide potential metabolic signatures in children with autism spectrum disorder
    Xian Liu, Xin Sun, Cheng Guo, Zhi-Fang Huang, Yi-Ru Chen, Fang-Mei Feng, Li-Jie Wu, Wen-Xiong Chen
    Frontiers in Psychiatry.2024;[Epub]     CrossRef
  • Washed Microbiota Transplantation Improves the Sleep Quality in Patients with Inflammatory Bowel Disease
    Qianqian Li, Yujie Liu, Zulun Zhang, Sheng Zhang, Xiao Ding, Faming Zhang
    Nature and Science of Sleep.2024; Volume 16: 1141.     CrossRef
Description of Luteibacter aegosomatis sp. nov., Luteibacter aegosomaticola sp. nov., and Luteibacter aegosomatissinici sp. nov. isolated from the Intestines of Aegosoma sinicum Larvae
Hae-In Joe , Jee-Won Choi , June-Young Lee , Hojun Sung , Su-Won Jeong , Yun-Seok Jeong , Jae-Yun Lee , Jin-Woo Bae
J. Microbiol. 2023;61(6):603-613.   Published online May 5, 2023
DOI: https://doi.org/10.1007/s12275-023-00051-7
  • 74 View
  • 0 Download
  • 3 Web of Science
  • 2 Crossref
AbstractAbstract
Three novel bacterial strains, 321T, 335T, and 353T, were isolated from the intestines of Aegosoma sinicum larvae collected from Paju-Si, South Korea. The strains were Gram-negative, obligate aerobe and had rod-shaped cells with a single flagellum. The three strains belonged to the genus Luteibacter in the family Rhodanobacteraceae and shared < 99.2% similarity in their 16S rRNA gene sequence and < 83.56% similarity in thier whole genome sequence. Strains 321T, 335T, and 353T formed a monophyletic clade with Luteibacter yeojuensis KACC 11405T, L. anthropi KACC 17855T, and L. rhizovicinus KACC 12830T, with sequence similarities of 98.77–98.91%, 98.44–98.58%, and 97.88–98.02%, respectively. Further genomic analyses, including the construction of the Up-to-date Bacterial Core Gene (UBCG) tree and assessment of other genome-related indices, indicated that these strains were novel species belonging to the genus Luteibacter. All three strains contained ubiquinone Q8 as their major isoprenoid quinone and iso-C15:0 and summed feature 9 ( C16:0 10-methyl and/or iso-C17:1 ω9c) as their major cellular fatty acids. Phosphatidylethanolamine and diphosphatidylglycerol were the major polar lipids in all the strains. The genomic DNA G + C contents of strains 321T, 335T, and 353T were 66.0, 64.5, and 64.5 mol%, respectively. Based on multiphasic classification, strains 321T, 335T, and 353T were classified into the genus Luteibacter as the type strains of novel species, for which the names Luteibacter aegosomatis sp. nov., Luteibacter aegosomaticola sp. nov., and Luteibacter aegosomatissinici sp. nov. are proposed, respectively.

Citations

Citations to this article as recorded by  
  • Luteibacter sahnii sp. nov., A Novel Yellow-Colored Xanthomonadin Pigment Producing Probiotic Bacterium from Healthy Rice Seed Microbiome
    Gagandeep Jaiswal, Rekha Rana, Praveen Kumar Nayak, Rekha Chouhan, Sumit G. Gandhi, Hitendra K. Patel, Prabhu B. Patil
    Current Microbiology.2024;[Epub]     CrossRef
  • Validation List no. 215. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
Editorial
Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
Jin-Won Lee
J. Microbiol. 2023;61(3):273-276.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00036-6
  • 78 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Bacteria employ a diverse array of cellular regulatory mechanisms to successfully adapt and thrive in ever-changing environments, including but not limited to temperature changes, fluctuations in nutrient availability, the presence or absence of electron acceptors such as oxygen, the availability of metal ions crucial for enzyme activity, and the existence of antibiotics. Bacteria can virtually modulate any step of gene expression from transcr!ptional initiation to posttranslational modification of a protein for the control of cellular processes. Furthermore, one gene regulator often controls another in a complex gene regulatory network. Thus, it is not easy to fully understand the intricacies of bacterial regulatory mechanisms in various environments. In this special issue, while acknowledging the challenge of covering all aspects of bacterial regulatory mechanisms across diverse environments, seven review articles are included to provide insight into the recent progress in understanding such mechanisms from different perspectives: positive regulatory mechanisms by secondary messenger (cAMP receptor protein), two-component signal transduction mechanisms (Rcs and Cpx), diverse regulatory mechanisms by a specific environmental factor in specific bacteria (oxygen availability in Mycobacterium and manganese ion availability in Salmonella), diverse regulatory mechanisms by a specific environmental factor (temperature and antibiotics), and regulatory mechanisms by antibiotics in cell wall synthesis. Bacteria, as ubiquitous organisms that can be found in almost every environment, carry out complex cellular processes that allow them to survive and thrive in a variety of different conditions despite their small size and relative simplicity. One of the key factors that allows bacteria to carry out these complex processes is their ability to regulate gene expression through various mechanisms. Gene expression is a fundamental biological process by which the genetic information encoded in a gene is transcribed into an RNA molecule and subsequently translated into a functional gene product, often a protein. Furthermore, the activity levels of proteins may further be altered by posttranslational modification. Regulation of gene expression refers to the control of the amount and timing of gene expression, and thus it can be divided into transcr!ptional, translational, and posttranslational levels.

Citations

Citations to this article as recorded by  
  • The PhoBR two-component system upregulates virulence in Aeromonas dhakensis C4–1
    Wei Feng, Xuesong Li, Nuo Yang, Lixia Fan, Guiying Guo, Jun Xie, Xiuqing Cai, Yuqi Meng, Jifeng Zeng, Yu Han, Jiping Zheng
    Aquaculture.2025; 595: 741665.     CrossRef
  • Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance
    Washu Dev, Fahmida Sultana, Hongge Li, Daowu Hu, Zhen Peng, Shoupu He, Haobo Zhang, Muhammad Waqas, Xiaoli Geng, Xiongming Du
    Plant Science.2025; 352: 112390.     CrossRef
  • PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli
    Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee, Mehrad Hamidian, You-Hee Cho
    mSystems.2024;[Epub]     CrossRef
  • Navigating the signaling landscape of Ralstonia solanacearum: a study of bacterial two-component systems
    Mohit Yadav, Janhavi Sathe, Valentina Teronpi, Aditya Kumar
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
Journal Articles
Secretions from Serratia marcescens Inhibit the Growth and Biofilm Formation of Candida spp. and Cryptococcus neoformans
Caiyan Xin , Fen Wang , Jinping Zhang , Quan Zhou , Fangyan Liu , Chunling Zhao , Zhangyong Song
J. Microbiol. 2023;61(2):221-232.   Published online February 21, 2023
DOI: https://doi.org/10.1007/s12275-022-00007-3
  • 60 View
  • 0 Download
  • 4 Web of Science
  • 2 Crossref
AbstractAbstract
Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients. Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp. and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid chromatography–linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.

Citations

Citations to this article as recorded by  
  • Antifungal activities of Equol against Candida albicans in vitro and in vivo
    Fen Wang, Jinping Zhang, Qian Zhang, Zhangyong Song, Caiyan Xin
    Virulence.2024;[Epub]     CrossRef
  • Antifungal Effect of Vitamin D3 against Cryptococcus neoformans Coincides with Reduced Biofilm Formation, Compromised Cell Wall Integrity, and Increased Generation of Reactive Oxygen Species
    Jian Huang, Junwen Lei, Anni Ge, Wei Xiao, Caiyan Xin, Zhangyong Song, Jinping Zhang
    Journal of Fungi.2023; 9(7): 772.     CrossRef
Metformin Regulates Gut Microbiota Abundance to Suppress M2 Skewing of Macrophages and Colorectal Tumorigenesis in Mice
Linfeng Fan , Xiangfu Zeng , Guofeng Xu
J. Microbiol. 2023;61(1):109-120.   Published online January 26, 2023
DOI: https://doi.org/10.1007/s12275-022-00010-8
  • 66 View
  • 0 Download
  • 5 Web of Science
  • 4 Crossref
AbstractAbstract
The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear. This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane (AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.

Citations

Citations to this article as recorded by  
  • Metformin alleviates colitis-associated colorectal cancer via inhibition of the TLR4/MyD88/NFκB/MAPK pathway and macrophage M2 polarization
    Xueying Lai, Bin Liu, Yu Wan, Ping Zhou, Wanjun Li, Wei Hu, Wei Gong
    International Immunopharmacology.2025; 144: 113683.     CrossRef
  • Metformin as an immunomodulatory agent in enhancing head and neck squamous cell carcinoma therapies
    Wenting Li, Nanshu Liu, Mingwei Chen, Dongjuan Liu, Sai Liu
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer.2025; 1880(2): 189262.     CrossRef
  • Clinical efficacy of metformin in familial adenomatous polyposis and the effect of intestinal flora
    Linxin Zhou, Linfu Zheng, Binbin Xu, Zhou Ye, Dazhou Li, Wen Wang
    Orphanet Journal of Rare Diseases.2024;[Epub]     CrossRef
  • An AMPK agonist suppresses the progress of colorectal cancer by regulating the polarization of TAM to M1 through inhibition of HIF-1α and mTOR signal pathway
    Yuanyuan Cao, Mingyi Wo, Chan Xu, Xianming Fei, Juan Jin, Zhiming Shan
    Journal of Cancer Research and Therapeutics.2023; 19(6): 1560.     CrossRef
Deletion of lacD gene affected stress tolerance and virulence of Streptococcus suis serotype 2
Xiaowu Jiang , Lexin Zhu , Dongbo Zhan
J. Microbiol. 2022;60(9):948-959.   Published online August 19, 2022
DOI: https://doi.org/10.1007/s12275-022-2146-4
  • 56 View
  • 0 Download
  • 2 Web of Science
  • 1 Crossref
AbstractAbstract
Streptococcus suis type 2 (S. suis type 2, SS2), an infectious pathogen which is zoonotic and can induce severely public health concern. Our previous research identified a newly differential secreted effector of tagatose-bisphosphate aldolase (LacD) mediated by VirD4 factor within the putative type IV secretion system of SS2, whereas the functional basis and roles in virulence of LacD remain elusive. Here in this study, the LacD was found enzymatic and can be activated to express under oxidative stress. Gene mutant and its complemental strain (ΔlacD and cΔlacD) were constructed to analyze the phenotypes, virulence and transcriptomic profiles as compared with the parental strain. The lacD gene deletion showed no effect on growth capability and cells morphology of SS2. However, reduced tolerance to oxidative and heat stress conditions, increased antimicrobial susceptibility to ciprofloxacin and kanamycin were found in ΔlacD strain. Further, the LacD deficiency led to weakened invasion and attenuated virulence since an easier phagocytosed and more prone to be cleared of SS2 in macrophages were shown in ΔlacD mutant. Distinctive transcriptional profiling in ΔlacD strain and typical downregulated genes with significant mRNA changes including alcohol dehydrogenase, GTPase, integrative and conjugative elements, and iron ABC transporters which were mainly involved in cell division, stress response, antimicrobial susceptibility and virulence regulation, were examined and confirmed by RNA sequencing and real time qPCR. In summary, the
results
demonstrated for the first time that LacD was a pluripotent protein mediated the metabolic, stress and virulent effect of SS2.

Citations

Citations to this article as recorded by  
  • Investigation of choline-binding protein of CbpD in the pathogenesis of Streptococcus suis type 2
    Lexin Zhu, Mengqing Li, Guijun Yu, Dongbo Zhan, Wenzhen Zeng, Nanyan Fu, Xiaowu Jiang
    Frontiers in Veterinary Science.2024;[Epub]     CrossRef
Characterization of Marinilongibacter aquaticus gen. nov., sp. nov., a unique marine bacterium harboring four CRISPR-Cas systems in the phylum Bacteroidota
Dao-Feng Zhang , Yu-Fang Yao , Hua-Peng Xue , Zi-Yue Fu , Xiao-Mei Zhang , Zongze Shao
J. Microbiol. 2022;60(9):905-915.   Published online August 1, 2022
DOI: https://doi.org/10.1007/s12275-022-2102-3
  • 61 View
  • 0 Download
  • 5 Web of Science
  • 6 Crossref
AbstractAbstract
A novel bacterium, designated YYF0007T, was isolated from an agar-degrading co-culture. The strain was found harboring four CRISPR-Cas systems of two classes in the chromosome and subsequently subjected to a study on polyphasic taxonomy. Pairwise analyses of the 16S rRNA gene sequences indicated that strain YYF0007T had highest 16S rRNA gene sequence similarity (92.2%) to Jiulongibacter sediminis JN- 14-9T. The phylogenomic trees based on the 16S rRNA gene and 269 single-copy orthologous gene clusters (OCs) indicated that strain YYF0007T should be recognized as a novel genus of the family Spirosomaceae. The cells were Gramstain- negative, nonmotile, strictly aerobic, and straight long rods with no flagellum. Optimum growth occurred at 28°C and pH 7.0 with the presence of NaCl concentration 1.0–3.0% (w/v). The strain showed oxidase and catalase activities. The major fatty acids were C16:1ω5c, iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The predominant isoprenoid quinone was MK-7. The complete genome size was 4.64 Mb with a DNA G + C content of 44.4%. Further typing of CRISPR-Cas systems in the family Spirosomaceae and the phylum Bacteroidota indicated that it was remarkable for strain YYF0007T featured by such a set of CRISPR-Cas systems. This trait highlights the applications of strain YYF- 0007T in studies on the evolutionary dynamics and bacterial autoimmunity of CRISPR-Cas system as a potential model. The name Marinilongibacter aquaticus gen. nov., sp. nov. is proposed, and the type strain is YYF0007T (= MCCC 1K06017T = GDMCC 1.2428T = JCM 34683T).

Citations

Citations to this article as recorded by  
  • Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects
    Jiashun Li, Shuaishuai Wu, Kaidian Zhang, Xueqiong Sun, Wenwen Lin, Cong Wang, Senjie Lin
    Microorganisms.2024; 12(1): 118.     CrossRef
  • Unraveling the mechanisms behind sodium persulphate-induced changes in petroleum-contaminated aquifers’ biogeochemical parameters and microbial communities
    Yuqi Qi, Jun Zeng, Junshi Tao, Rentao Liu, Renchuan Fu, Chao Yan, Xiao Liu, Na Liu, Yanru Hao
    Chemosphere.2024; 351: 141174.     CrossRef
  • Arcicella gelida sp. nov. and Arcicella lustrica sp. nov., isolated from streams in China and re-examining the taxonomic status of all the genera within the families Spirosomataceae and Cytophagaceae
    Huibin Lu, Li Chen, Linpei Huang
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
  • Thalassospira aquimaris sp. nov. and Winogradskyella marincola sp. nov. two marine bacteria isolated from an agar-degrading co-culture
    Zi-Yue Fu, Dao-Feng Zhang, Meng-Han Huang, Hong-Chuan Wang, Xiao-Ye Chen, Yu-Fang Yao, Yang Yuan, Wen-Jun Li
    Antonie van Leeuwenhoek.2024;[Epub]     CrossRef
  • Validation List no. 209. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2023;[Epub]     CrossRef
  • Telluribacter roseus sp. nov., Isolated from the Kumtag Desert Soil
    Chu-Ying Feng, Jia-Rui Han, Chun-Yan Lu, Li Gu, Shuai Li, Wen-Hui Lian, Lei Dong, Wen-Jun Li
    Current Microbiology.2023;[Epub]     CrossRef
Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny
Wanderson Marques Da Silva , Mariano Larzabal , Flavia Figueira Aburjaile , Nahuel Riviere , Luisina Martorelli , James Bono , Ariel Amadio , Angel Cataldi
J. Microbiol. 2022;60(7):689-704.   Published online June 22, 2022
DOI: https://doi.org/10.1007/s12275-022-1616-z
  • 52 View
  • 0 Download
  • 6 Web of Science
  • 4 Crossref
AbstractAbstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen capable of causing illness in humans. In a previous study, our group showed that a STEC isolate belonging to O22:H8 serotype (strain 154) can interfere with STEC O157:H7 colonization both in vitro and in vivo. Using whole-genome sequencing and genomic comparative, we predicted a subset of genes acquired by O22:H8 strain 154 through horizontal gene transfer that might be responsible for the phenotype previously described by our group. Among them were identified genes related to the pathogenesis of non-LEE (locus of enterocyte effacement) STEC, specific metabolic processes, antibiotic resistance and genes encoding for the T6SS-1 that is related to inter-bacterial competition. In addition, we showed that this strain carries stx1c and stx2dact, a mucus-inducible variant. The results obtained in this study provide insights into STEC genomic plasticity and the importance of genomic islands in the adaptation and pathogenesis of this pathogen.

Citations

Citations to this article as recorded by  
  • MEGARes and AMR++, v3.0: an updated comprehensive database of antimicrobial resistance determinants and an improved software pipeline for classification using high-throughput sequencing
    Nathalie Bonin, Enrique Doster, Hannah Worley, Lee J Pinnell, Jonathan E Bravo, Peter Ferm, Simone Marini, Mattia Prosperi, Noelle Noyes, Paul S Morley, Christina Boucher
    Nucleic Acids Research.2023; 51(D1): D744.     CrossRef
  • Genomes-based MLST, cgMLST, wgMLST and SNP analysis of Salmonella Typhimurium from animals and humans
    Shigan Yan, Zhaoxu Jiang, Wencheng Zhang, Zhenhai Liu, Xiaorui Dong, Donghui Li, Zijun Liu, Chengyu Li, Xu Liu, Liping Zhu
    Comparative Immunology, Microbiology and Infectious Diseases.2023; 96: 101973.     CrossRef
  • Escherichia coli O157:H7 tir 255 T > A allele strains differ in chromosomal and plasmid composition
    Margaret D. Weinroth, Michael L. Clawson, Gregory P. Harhay, Mark Eppinger, Dayna M. Harhay, Timothy P. L. Smith, James L. Bono
    Frontiers in Microbiology.2023;[Epub]     CrossRef
  • Occurrence and genetic characterization of Shiga toxin-producing Escherichia coli on bovine and pork carcasses and the environment from transport trucks
    Rocío Colello, Manuela Baigorri, Felipe Del Canto, Juliana González, Ariel Rogé, Claudia van der Ploeg, Federico Sánchez Chopa, Mónica Sparo, Analía Etcheverría, Nora Lía Padola
    World Journal of Microbiology and Biotechnology.2023;[Epub]     CrossRef
Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses
Xiaowei Gong , Huajun Luo , Liu Hong , Jun Wu , Heng Wu , Chunxia Song , Wei Zhao , Yi Han , Ya Dao , Xia Zhang , Donglai Zhu , Yiyong Luo
J. Microbiol. 2022;60(8):832-842.   Published online May 27, 2022
DOI: https://doi.org/10.1007/s12275-022-2059-2
  • 56 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Tryptophol (TOL) is a metabolic derivative of tryptophan (Trp) and shows pleiotropic effects in humans, plants and microbes. In this study, the effect of Trp and phenylalanine (Phe) on TOL production in Saccharomyces cerevisiae was determined, and a systematic interpretation of TOL accumulation was offered by transcriptomic and metabolomic analyses. Trp significantly promoted TOL production, but the output plateaued (231.02−266.31 mg/L) at Trp concentrations ≥ 0.6 g/L. In contrast, Phe reduced the stimulatory effect of Trp, which was strongly dependent on the Phe concentration. An integrated genomic, transcriptomic, and metabolomic analysis revealed that the effect of Trp and Phe on TOL production was mainly related to the transamination and decarboxylation of the Ehrlich pathway. Additionally, other genes, including thiamine regulon genes (this), the allantoin catabolic genes dal1, dal2, dal4, and the transcriptional activator gene aro80, may play important roles. These findings were partly supported by the fact that the thi4 gene was involved in TOL production, as shown by heterologous expression analysis. To the best of our knowledge, this novel biological function of thi4 in S. cerevisiae is reported here for the first time. Overall, our findings provide insights into the mechanism of TOL production, which will contribute to TOL production using metabolic engineering strategies.

Citations

Citations to this article as recorded by  
  • Engineering the L-tryptophan metabolism for efficient de novo biosynthesis of tryptophol in Saccharomyces cerevisiae
    Ye Li, Jingzhen Sun, Zhenhao Fu, Yubing He, Xiaorui Chen, Shijie Wang, Lele Zhang, Jiansheng Jian, Weihua Yang, Chunli Liu, Xiuxia Liu, Yankun Yang, Zhonghu Bai
    Biotechnology for Biofuels and Bioproducts.2024;[Epub]     CrossRef
  • Evaluating the Atypical Aging Potential Development in Sparkling Wines Can Be Achieved by Assessing the Base Wines at the End of the Alcoholic Fermentation
    Simone Delaiti, Tiziana Nardin, Tomas Roman, Stefano Pedò, Roberto Larcher
    Journal of Agricultural and Food Chemistry.2024; 72(9): 4918.     CrossRef
  • Tryptophol Improves the Biocontrol Efficacy of Scheffersomyces spartinae against the Gray Mold of Strawberries by Quorum Sensing
    Zichang Zhao, Yingying Wei, Xiurong Zou, Shu Jiang, Yi Chen, Jianfen Ye, Feng Xu, Hongfei Wang, Xingfeng Shao
    Journal of Agricultural and Food Chemistry.2023; 71(49): 19739.     CrossRef
  • A comprehensive review and comparison of L-tryptophan biosynthesis in Saccharomyces cerevisiae and Escherichia coli
    Xinru Ren, Yue Wei, Honglu Zhao, Juanjuan Shao, Fanli Zeng, Zhen Wang, Li Li
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
Characterization of components of a reducing system for SoxR in the cytoplasmic membrane of Escherichia coli
Kang-Lok Lee , Kyung-Chang Lee , Joon-Hee Lee , Jung-Hye Roe
J. Microbiol. 2022;60(4):387-394.   Published online March 28, 2022
DOI: https://doi.org/10.1007/s12275-022-1667-1
  • 59 View
  • 0 Download
  • 2 Web of Science
  • 3 Crossref
AbstractAbstract
A reducing system of SoxR, a regulator of redox-active molecules, was identified as rsxABCDGE gene products and RseC in Escherichia coli through genetic studies. We found that ApbE was an additional component of the reducer system. Bacterial two hybrid analysis revealed that these proteins indeed had multiple interactions among themselves. RseC and RsxB formed the core of the complex, interacting with more than five other components. RsxC, the only cytoplasmic component of the system, interacted with SoxR. It might be linked with the rest of the complex via RsxB. Membrane fractions containing the wild type complex but not the mutant complex reduced purified SoxR using NADH as an electron source. These results suggest that Rsx genes, RseC, and ApbE can form a complex using NAD(P)H to reduce SoxR.

Citations

Citations to this article as recorded by  
  • AcrAB-TolC efflux pump overexpression and tet(A) gene mutation increase tigecycline resistance in Klebsiella pneumoniae
    Zhaoxin Xia, Jing zhou, Nana Gao, Ge Li, Runde Liu, Guoping Lu, Jilu Shen
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
  • The Na+-translocating NADH:quinone oxidoreductase (Na+-NQR): Physiological role, structure and function of a redox-driven, molecular machine
    Julia Steuber, Günter Fritz
    Biochimica et Biophysica Acta (BBA) - Bioenergetics.2024; 1865(4): 149485.     CrossRef
  • Functional analysis of bacterial genes accidentally packaged in rhizospheric phageome of the wild plant species Abutilon fruticosum
    Ruba Abdulrahman Ashy
    Saudi Journal of Biological Sciences.2023; 30(10): 103789.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP