Search
- Page Path
-
HOME
> Search
Review
- Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis.
-
Anyeseu Park, Chanhee Lee, Jeong Yoon Lee
-
J. Microbiol. 2024;62(5):393-407. Published online March 7, 2024
-
DOI: https://doi.org/10.1007/s12275-024-00112-5
-
-
24
View
-
0
Download
-
1
Citations
-
Abstract
- Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A-G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.
Journal Articles
- Prevalence of Indigenous Antibiotic‑Resistant Salmonella Isolates and Their Application to Explore a Lytic Phage vB_SalS_KFSSM with an Intra‑Broad Specificity
-
Jaein Choe , Su-Hyeon Kim , Ji Min Han , Jong-Hoon Kim , Mi-Sun Kwak , Do-Won Jeong , Mi-Kyung Park
-
J. Microbiol. 2023;61(12):1063-1073. Published online January 2, 2024
-
DOI: https://doi.org/10.1007/s12275-023-00098-6
-
-
Abstract
- The consumption of fresh produce has led to increase in antibiotic-resistant (AR) Salmonella outbreaks. In this study, indigenous
Salmonella was isolated from a total of two hundred-two samples including fresh produce and agricultural environmental
samples in Korea. After biochemical confirmation using the Indole, Methyl Red, Voges-Proskauer, Citrate tests, presumable
Salmonella isolates were identified by 16S rRNA sequencing. Identified Salmonella isolates were evaluated for antibiotic
susceptibility against twenty-two antibiotics. The specificity and the efficiency of plating (EOP) of vB_SalS_KFSSM were
evaluated against fifty-three bacterial strains. Twenty-five suspected Salmonella were isolated and confirmed by the positive
result
for methyl red and citrate, of which ten were identified as Salmonella spp. through 16S rRNA gene sequencing. Eight
Salmonella isolates (4.0%, n = 8/202) were resistant to at least one antibiotic, among which five were multi-drug resistant. As
a lytic phage against Salmonella spp. CMGS-1, vB_SalS_KFSSM was isolated from cow manure. The phage was observed as
a tailed phage belonging to the class Caudoviricetes. It exhibited an intra-broad specificity against four indigenous AR Salmonella
isolates, two indigenous Salmonella isolates, and five other Salmonella serotypes with great efficiencies (EOP ≥ 0.75).
Thus, this study suggested the potential of vB_SalS_KFSSM to combat indigenous AR Salmonella.
- Structural and Functional Analyses of the Flavoprotein Disulfide Reductase FN0820 of Fusobacterium nucleatum
-
Hyunwoo Shin , Yeongjin Baek , Dukwon Lee , Yongbin Xu , Yonghoon Kwon , Inseong Jo , Nam-Chul Ha
-
J. Microbiol. 2023;61(12):1033-1041. Published online December 20, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00095-9
-
-
27
View
-
0
Download
-
1
Citations
-
Abstract
- Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family
and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response.
Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral
cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I
FDR family, exhibited a higher activity of a Cu2+-
dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased
the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog
5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results
have implications for developing new treatment strategies against pathogens that defend the host immune response with
Group I FDRs.
- Fresh Washed Microbiota Transplantation Alters Gut Microbiota Metabolites to Ameliorate Sleeping Disorder Symptom of Autistic Children
-
Nai-Hua Liu , Hong-Qian Liu , Jia-Yi Zheng , Meng-Lu Zhu , Li-Hao Wu , Hua-Feng Pan , Xing-Xiang He
-
J. Microbiol. 2023;61(8):741-753. Published online September 4, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00069-x
-
-
18
View
-
0
Download
-
2
Citations
-
Abstract
- Accumulating studies have raised concerns about gut dysbiosis associating autism spectrum disorder (ASD) and its related
symptoms. However, the effect of gut microbiota modification on the Chinese ASD population and its underlying mechanism
were still elusive. Herein, we enrolled 24 ASD children to perform the first course of fresh washed microbiota transplantation
(WMT), 18 patients decided to participate the second course, 13 of which stayed to participate the third course, and there were
8 patients at the fourth course. Then we evaluated the effects of fresh WMT on these patients and their related symptoms.
Our results found that the sleeping disorder symptom was positively interrelated to ASD, fresh WMT significantly alleviated
ASD and its sleeping disorder and constipation symptoms. In addition, WMT stably and continuously downregulated Bacteroides/
Flavonifractor/Parasutterella while upregulated Prevotella_9 to decrease toxic metabolic production and improve
detoxification by regulating glycolysis/myo-inositol/D-glucuronide/D-glucarate degradation, L-1,2-propanediol degradation,
fatty acid β-oxidation. Thus, our results suggested that fresh WMT moderated gut microbiome to improve the behavioral
and sleeping disorder symptoms of ASD via decrease toxic metabolic production and improve detoxification. Which thus
provides a promising gut ecological strategy for ASD children and its related symptoms treatments.
- Description of Luteibacter aegosomatis sp. nov., Luteibacter aegosomaticola sp. nov., and Luteibacter aegosomatissinici sp. nov. isolated from the Intestines of Aegosoma sinicum Larvae
-
Hae-In Joe , Jee-Won Choi , June-Young Lee , Hojun Sung , Su-Won Jeong , Yun-Seok Jeong , Jae-Yun Lee , Jin-Woo Bae
-
J. Microbiol. 2023;61(6):603-613. Published online May 5, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00051-7
-
-
18
View
-
0
Download
-
2
Citations
-
Abstract
- Three novel bacterial strains, 321T,
335T,
and 353T,
were isolated from the intestines of Aegosoma sinicum larvae collected
from Paju-Si, South Korea. The strains were Gram-negative, obligate aerobe and had rod-shaped cells with a single flagellum.
The three strains belonged to the genus Luteibacter in the family Rhodanobacteraceae and shared < 99.2% similarity
in their 16S rRNA gene sequence and < 83.56% similarity in thier whole genome sequence. Strains 321T,
335T,
and 353T
formed a monophyletic clade with Luteibacter yeojuensis KACC 11405T,
L. anthropi KACC 17855T,
and L. rhizovicinus
KACC 12830T,
with sequence similarities of 98.77–98.91%, 98.44–98.58%, and 97.88–98.02%, respectively. Further
genomic analyses, including the construction of the Up-to-date Bacterial Core Gene (UBCG) tree and assessment of other
genome-related indices, indicated that these strains were novel species belonging to the genus Luteibacter. All three strains
contained ubiquinone Q8 as their major isoprenoid quinone and iso-C15:0 and summed feature 9 (
C16:0 10-methyl and/or
iso-C17:1 ω9c) as their major cellular fatty acids. Phosphatidylethanolamine and diphosphatidylglycerol were the major polar
lipids in all the strains. The genomic DNA G + C contents of strains 321T,
335T,
and 353T
were 66.0, 64.5, and 64.5 mol%,
respectively. Based on multiphasic classification, strains 321T,
335T,
and 353T
were classified into the genus Luteibacter
as the type strains of novel species, for which the names Luteibacter aegosomatis sp. nov., Luteibacter aegosomaticola sp.
nov., and Luteibacter aegosomatissinici sp. nov. are proposed, respectively.
Editorial
- Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
-
Jin-Won Lee
-
J. Microbiol. 2023;61(3):273-276. Published online April 3, 2023
-
DOI: https://doi.org/10.1007/s12275-023-00036-6
-
-
20
View
-
0
Download
-
1
Citations
-
Abstract
- Bacteria employ a diverse array of cellular regulatory
mechanisms to successfully adapt and thrive in ever-changing
environments, including but not limited to temperature
changes, fluctuations in nutrient availability, the presence
or absence of electron acceptors such as oxygen, the availability
of metal ions crucial for enzyme activity, and the
existence of antibiotics. Bacteria can virtually modulate
any step of gene expression from transcr!ptional initiation
to posttranslational modification of a protein for the control
of cellular processes. Furthermore, one gene regulator
often controls another in a complex gene regulatory network.
Thus, it is not easy to fully understand the intricacies of
bacterial regulatory mechanisms in various environments. In
this special issue, while acknowledging the challenge of covering
all aspects of bacterial regulatory mechanisms across
diverse environments, seven review articles are included to
provide insight into the recent progress in understanding
such mechanisms from different perspectives: positive regulatory
mechanisms by secondary messenger (cAMP receptor
protein), two-component signal transduction mechanisms
(Rcs and Cpx), diverse regulatory mechanisms by a specific
environmental factor in specific bacteria (oxygen availability
in Mycobacterium and manganese ion availability in Salmonella),
diverse regulatory mechanisms by a specific environmental
factor (temperature and antibiotics), and regulatory
mechanisms by antibiotics in cell wall synthesis.
Bacteria, as ubiquitous organisms that can be found in
almost every environment, carry out complex cellular processes
that allow them to survive and thrive in a variety of
different conditions despite their small size and relative simplicity.
One of the key factors that allows bacteria to carry
out these complex processes is their ability to regulate gene
expression through various mechanisms. Gene expression
is a fundamental biological process by which the genetic
information encoded in a gene is transcribed into an RNA
molecule and subsequently translated into a functional gene
product, often a protein. Furthermore, the activity levels of
proteins may further be altered by posttranslational modification.
Regulation of gene expression refers to the control
of the amount and timing of gene expression, and thus it
can be divided into transcr!ptional, translational, and posttranslational
levels.
Journal Articles
- Secretions from Serratia marcescens Inhibit the Growth and Biofilm Formation of Candida spp. and Cryptococcus neoformans
-
Caiyan Xin , Fen Wang , Jinping Zhang , Quan Zhou , Fangyan Liu , Chunling Zhao , Zhangyong Song
-
J. Microbiol. 2023;61(2):221-232. Published online February 21, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00007-3
-
-
17
View
-
0
Download
-
1
Citations
-
Abstract
- Candida spp. and Cryptococcus are conditional pathogenic fungi that commonly infect immunocompromised patients.
Over the past few decades, the increase in antifungal resistance has prompted the development of new antifungal agents. In
this study, we explored the potential antifungal effects of secretions from Serratia marcescens on Candida spp. and Cryptococcus
neoformans. We confirmed that the supernatant of S. marcescens inhibited fungal growth, suppressed hyphal and
biofilm formation, and downregulated the expression of hyphae-specific genes and virulence-related genes in Candida spp.
and C. neoformans. Furthermore, the S. marcescens supernatant retained biological stability after heat, pH, and protease
K treatment. The chemical profile of the S. marcescens supernatant was characterized by ultra-high-performance liquid
chromatography–linear ion trap/orbitrap high resolution mass spectrometry analysis and a total of 61 compounds with an
mzCloud best match of greater than 70 were identified. In vivo, treatment with the S. marcescens supernatant reduced the
mortality of fungi-infected Galleria mellonella. Taken together, our results revealed that the stable antifungal substances in
the supernatant of S. marcescens have promising potential applications in the development of new antifungal agents.
- Metformin Regulates Gut Microbiota Abundance to Suppress M2 Skewing of Macrophages and Colorectal Tumorigenesis in Mice
-
Linfeng Fan , Xiangfu Zeng , Guofeng Xu
-
J. Microbiol. 2023;61(1):109-120. Published online January 26, 2023
-
DOI: https://doi.org/10.1007/s12275-022-00010-8
-
-
17
View
-
0
Download
-
2
Citations
-
Abstract
- The correlation of imbalanced gut microbiota with the onset and progression of colorectal cancer (CRC) has become clear.
This work investigates the effect of metformin on gut microbiota and genesis of CRC in mice. Human fecal samples were
collected from healthy control (HC) donors and CRC patients. Compared to HC donors, CRC patients had reduced abundance
of gut microbiota; however, they had increased abundance of detrimental Bacteroidetes. Mice were injected with azomethane
(AOM) to induce colorectal tumorigenesis models. Treatment of CRC patients-sourced fecal microbiota promoted
tumorigenesis, and it increased the expression of Ki67, β-catenin, COX-2, and Cyclin D1 in mouse colon tissues. Further
treatment of metformin blocked the colorectal tumorigenesis in mice. Fecal microbiota from the metformin-treated mice was
collected, which showed decreased Bacteroidetes abundance and suppressed AOM-induced colorectal tumorigenesis in mice
as well. Moreover, the metformin- modified microbiota promoted the M1 macrophage-related markers IL-6 and iNOS but
suppressed the M2 macrophage-related markers IL-4R and Arg1 in mouse colon tissues. In conclusion, this study suggests
that metformin-mediated gut microbiota alteration suppresses macrophage M2 polarization to block colorectal tumorigenesis.
- Deletion of lacD gene affected stress tolerance and virulence of Streptococcus suis serotype 2
-
Xiaowu Jiang , Lexin Zhu , Dongbo Zhan
-
J. Microbiol. 2022;60(9):948-959. Published online August 19, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2146-4
-
-
Abstract
- Streptococcus suis type 2 (S. suis type 2, SS2), an infectious
pathogen which is zoonotic and can induce severely public
health concern. Our previous research identified a newly differential
secreted effector of tagatose-bisphosphate aldolase
(LacD) mediated by VirD4 factor within the putative type IV
secretion system of SS2, whereas the functional basis and roles
in virulence of LacD remain elusive. Here in this study, the
LacD was found enzymatic and can be activated to express
under oxidative stress. Gene mutant and its complemental
strain (ΔlacD and cΔlacD) were constructed to analyze the
phenotypes, virulence and transcriptomic profiles as compared
with the parental strain. The lacD gene deletion showed
no effect on growth capability and cells morphology of SS2.
However, reduced tolerance to oxidative and heat stress conditions,
increased antimicrobial susceptibility to ciprofloxacin
and kanamycin were found in ΔlacD strain. Further, the LacD
deficiency led to weakened invasion and attenuated virulence
since an easier phagocytosed and more prone to be cleared of
SS2 in macrophages were shown in ΔlacD mutant. Distinctive
transcriptional profiling in ΔlacD strain and typical downregulated
genes with significant mRNA changes including
alcohol dehydrogenase, GTPase, integrative and conjugative
elements, and iron ABC transporters which were mainly involved
in cell division, stress response, antimicrobial susceptibility
and virulence regulation, were examined and confirmed
by RNA sequencing and real time qPCR. In summary, the
results
demonstrated for the first time that LacD was a pluripotent
protein mediated the metabolic, stress and virulent
effect of SS2.
- Characterization of Marinilongibacter aquaticus gen. nov., sp. nov., a unique marine bacterium harboring four CRISPR-Cas systems in the phylum Bacteroidota
-
Dao-Feng Zhang , Yu-Fang Yao , Hua-Peng Xue , Zi-Yue Fu , Xiao-Mei Zhang , Zongze Shao
-
J. Microbiol. 2022;60(9):905-915. Published online August 1, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2102-3
-
-
24
View
-
0
Download
-
5
Citations
-
Abstract
- A novel bacterium, designated YYF0007T, was isolated from
an agar-degrading co-culture. The strain was found harboring
four CRISPR-Cas systems of two classes in the chromosome
and subsequently subjected to a study on polyphasic
taxonomy. Pairwise analyses of the 16S rRNA gene sequences
indicated that strain YYF0007T had highest 16S rRNA gene
sequence similarity (92.2%) to Jiulongibacter sediminis JN-
14-9T. The phylogenomic trees based on the 16S rRNA gene
and 269 single-copy orthologous gene clusters (OCs) indicated
that strain YYF0007T should be recognized as a novel
genus of the family Spirosomaceae. The cells were Gramstain-
negative, nonmotile, strictly aerobic, and straight long
rods with no flagellum. Optimum growth occurred at 28°C
and pH 7.0 with the presence of NaCl concentration 1.0–3.0%
(w/v). The strain showed oxidase and catalase activities.
The major fatty acids were C16:1ω5c, iso-C15:0 and summed
feature 3 (C16:1 ω7c and/or C16:1 ω6c). The predominant isoprenoid
quinone was MK-7. The complete genome size was
4.64 Mb with a DNA G + C content of 44.4%. Further typing
of CRISPR-Cas systems in the family Spirosomaceae and the
phylum Bacteroidota indicated that it was remarkable for
strain YYF0007T featured by such a set of CRISPR-Cas systems.
This trait highlights the applications of strain YYF-
0007T in studies on the evolutionary dynamics and bacterial
autoimmunity of CRISPR-Cas system as a potential model.
The name Marinilongibacter aquaticus gen. nov., sp. nov. is
proposed, and the type strain is YYF0007T (= MCCC 1K06017T
= GDMCC 1.2428T = JCM 34683T).
- Whole-genome sequencing analysis of Shiga toxin-producing Escherichia coli O22:H8 isolated from cattle prediction pathogenesis and colonization factors and position in STEC universe phylogeny
-
Wanderson Marques Da Silva , Mariano Larzabal , Flavia Figueira Aburjaile , Nahuel Riviere , Luisina Martorelli , James Bono , Ariel Amadio , Angel Cataldi
-
J. Microbiol. 2022;60(7):689-704. Published online June 22, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1616-z
-
-
18
View
-
0
Download
-
5
Citations
-
Abstract
- Shiga toxin-producing Escherichia coli (STEC) is a foodborne
pathogen capable of causing illness in humans. In a previous
study, our group showed that a STEC isolate belonging to
O22:H8 serotype (strain 154) can interfere with STEC O157:H7
colonization both in vitro and in vivo. Using whole-genome
sequencing and genomic comparative, we predicted a subset
of genes acquired by O22:H8 strain 154 through horizontal
gene transfer that might be responsible for the phenotype
previously described by our group. Among them were identified
genes related to the pathogenesis of non-LEE (locus of
enterocyte effacement) STEC, specific metabolic processes,
antibiotic resistance and genes encoding for the T6SS-1 that
is related to inter-bacterial competition. In addition, we showed
that this strain carries stx1c and stx2dact, a mucus-inducible
variant. The results obtained in this study provide insights
into STEC genomic plasticity and the importance of genomic
islands in the adaptation and pathogenesis of this
pathogen.
- Effects of tryptophan and phenylalanine on tryptophol production in Saccharomyces cerevisiae revealed by transcriptomic and metabolomic analyses
-
Xiaowei Gong , Huajun Luo , Liu Hong , Jun Wu , Heng Wu , Chunxia Song , Wei Zhao , Yi Han , Ya Dao , Xia Zhang , Donglai Zhu , Yiyong Luo
-
J. Microbiol. 2022;60(8):832-842. Published online May 27, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2059-2
-
-
17
View
-
0
Download
-
3
Citations
-
Abstract
- Tryptophol (TOL) is a metabolic derivative of tryptophan
(Trp) and shows pleiotropic effects in humans, plants and
microbes. In this study, the effect of Trp and phenylalanine
(Phe) on TOL production in Saccharomyces cerevisiae was determined,
and a systematic interpretation of TOL accumulation
was offered by transcriptomic and metabolomic analyses.
Trp significantly promoted TOL production, but the output
plateaued (231.02−266.31 mg/L) at Trp concentrations ≥ 0.6
g/L. In contrast, Phe reduced the stimulatory effect of Trp,
which was strongly dependent on the Phe concentration. An
integrated genomic, transcriptomic, and metabolomic analysis
revealed that the effect of Trp and Phe on TOL production
was mainly related to the transamination and decarboxylation
of the Ehrlich pathway. Additionally, other genes, including
thiamine regulon genes (this), the allantoin catabolic
genes dal1, dal2, dal4, and the transcriptional activator gene
aro80, may play important roles. These findings were partly
supported by the fact that the thi4 gene was involved in TOL
production, as shown by heterologous expression analysis. To
the best of our knowledge, this novel biological function of thi4
in S. cerevisiae is reported here for the first time. Overall, our
findings provide insights into the mechanism of TOL production,
which will contribute to TOL production using metabolic
engineering strategies.
- Characterization of components of a reducing system for SoxR in the cytoplasmic membrane of Escherichia coli
-
Kang-Lok Lee , Kyung-Chang Lee , Joon-Hee Lee , Jung-Hye Roe
-
J. Microbiol. 2022;60(4):387-394. Published online March 28, 2022
-
DOI: https://doi.org/10.1007/s12275-022-1667-1
-
-
21
View
-
0
Download
-
3
Citations
-
Abstract
- A reducing system of SoxR, a regulator of redox-active molecules,
was identified as rsxABCDGE gene products and RseC
in Escherichia coli through genetic studies. We found that
ApbE was an additional component of the reducer system.
Bacterial two hybrid analysis revealed that these proteins indeed
had multiple interactions among themselves. RseC and
RsxB formed the core of the complex, interacting with more
than five other components. RsxC, the only cytoplasmic component
of the system, interacted with SoxR. It might be linked
with the rest of the complex via RsxB. Membrane fractions
containing the wild type complex but not the mutant complex
reduced purified SoxR using NADH as an electron source.
These results suggest that Rsx genes, RseC, and ApbE can
form a complex using NAD(P)H to reduce SoxR.
- Regulatory role of cysteines in (2R, 3R)-butanediol dehydrogenase BdhA of Bacillus velezensis strain GH1-13
-
Yunhee Choi , Yong-Hak Kim
-
J. Microbiol. 2022;60(4):411-418. Published online March 14, 2022
-
DOI: https://doi.org/10.1007/s12275-022-2018-y
-
-
17
View
-
0
Download
-
2
Citations
-
Abstract
- Bacillus velezensis strain GH1-13 contains a (2R,3R)-butanediol
dehydrogenase (R-BDH) BdhA which converts acetoin
to R-BD reversibly, however, little is known about its regulatory
cysteine and biological significance. We performed sitedirected
mutation of three cysteines in BdhA. The C37S mutant
had no enzyme activity and the C34S and C177S mutants
differed from each other and wild type (WT). After zinc affinity
chromatography, 1 mM ZnCl2 treatment resulted in a
3-fold enhancement of the WT activity, but reduced activity
of the C34S mutant by more than 2 folds compared to the untreated
ones. However, ZnCl2 treatment did not affect the activity
of the C177S mutant. Most of the double and triple mutant
proteins (C34S/C37S, C34S/C177S, C37S/C177S, and
C34S/C37S/C177S) were aggregated in zinc resins, likely due
to the decreased protein stability. All of the purified WT and
single mutant proteins increased multiple intermolecular disulfide
bonds in the presence of H2O2 as the buffer pH decreased
from 7.5 to 5.5, whereas an intramolecular disulfide
bond of cysteine 177 and another cysteine in the CGIC motif
region was likely formed at pH higher than pKa of 7.5. When
pH varied, WT and its C34S or C177S mutants reduced acetoin
to R-BD at the optimum pH 5.5 and oxidized R-BD to
acetoin at the optimum pH 10. This study demonstrated that
cysteine residues in BdhA play a regulatory role for the production
of acetoin and R-BD depending on pH as well as
metal binding and oxidative stress.
- Probiotic supplements alleviate gestational diabetes mellitus by restoring the diversity of gut microbiota: a study based on 16S rRNA sequencing
-
Qing-Xiang Zheng , Xiu-Min Jiang , Hai-Wei Wang , Li Ge , Yu-Ting Lai , Xin-Yong Jiang , Fan Chen , Ping-Ping Huang
-
J. Microbiol. 2021;59(9):827-839. Published online August 12, 2021
-
DOI: https://doi.org/10.1007/s12275-021-1094-8
-
-
25
View
-
0
Download
-
14
Citations
-
Abstract
- Probiotics effectively prevent and improve metabolic diseases
such as diabetes by regulating the intestinal microenvironment
and gut microbiota. However, the effects of probiotics
in gestational diabetes mellitus are not clear. Here, we
showed that probiotic supplements significantly improved
fasting blood glucose in a gestational diabetes mellitus rat
model. To further understand the mechanisms of probiotics
in gestational diabetes mellitus, the gut microbiota were analyzed
via 16S rRNA sequencing. We found that compared
with the normal pregnant group, the gestational diabetes mellitus
rats had decreased diversity of gut microbiota. Moreover,
probiotic supplementation restored the diversity of the
gut microbiota in gestational diabetes mellitus rats, and the
gut microbiota structure tended to be similar to that of normal
pregnant rats. In particular, compared with gestational
diabetes mellitus rats, the abundance of Firmicutes and Actinobacteria
was higher after probiotic supplementation. Furthermore,
activating carbohydrate metabolism and membrane
transport pathways may be involved in the potential mechanisms
by which probiotic supplements alleviate gestational
diabetes mellitus. Overall, our results suggested that probiotic
supplementation might be a novel approach to restore the gut
microbiota of gestational diabetes mellitus rats and provided
an experimental evidence for the use of probiotic supplements
to treat gestational diabetes melitus.
TOP