Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "synthetic biology"
Filter
Filter
Article category
Keywords
Publication year
Journal Articles
A mucin-responsive hybrid two-component system controls Bacteroides thetaiotaomicron colonization and gut homeostasis
Ju-Hyung Lee , Soo-Jeong Kwon , Ji-Yoon Han , Sang-Hyun Cho , Yong-Joon Cho , Joo-Hong Park
J. Microbiol. 2022;60(2):215-223.   Published online February 1, 2022
DOI: https://doi.org/10.1007/s12275-022-1649-3
  • 22 View
  • 0 Download
  • 5 Citations
AbstractAbstract
The mammalian intestinal tract contains trillions of bacteria. However, the genetic factors that allow gut symbiotic bacteria to occupy intestinal niches remain poorly understood. Here, we identified genetic determinants required for Bacteroides thetaiotaomicron colonization in the gut using transposon sequencing analysis. Transposon insertion in BT2391, which encodes a hybrid two-component system, increased the competitive fitness of B. thetaiotaomicron. The BT2391 mutant showed a growth advantage in a mucin-dependent manner and had an increased ability to adhere to mucus-producing cell lines. The increased competitive advantage of the BT2391 mutant was dependent on the BT2392–2395 locus containing susCD homologs. Deletion of BT2391 led to changes in the expression levels of B. thetaiotaomicron genes during gut colonization. However, colonization of the BT2391 mutant promoted DSS colitis in low-fiber diet-fed mice. These results indicate that BT2391 contributes to a sustainable symbiotic relationship by maintaining a balance between mucosal colonization and gut homeostasis.
Melatonin attenuates microbiota dysbiosis of jejunum in short-term sleep deprived mice
Ting Gao , Zixu Wang , Jing Cao , Yulan Dong , Yaoxing Chen
J. Microbiol. 2020;58(7):588-597.   Published online May 18, 2020
DOI: https://doi.org/10.1007/s12275-020-0094-4
  • 16 View
  • 0 Download
  • 27 Citations
AbstractAbstract
Our study demonstrated that sleep deprivation resulted in homeostasis disorder of colon. Our study goes deeper into the positive effects of melatonin on small intestinal microbiota disorder caused by sleep deprivation. We successfully established a multiplatform 72 h sleep deprivation mouse model with or without melatonin supplementation, and analyzed the change of small intestinal microbiota using high-throughput sequencing of the 16S rRNA. We found melatonin supplementation suppressed the decrease of plasma melatonin level in sleep deprivation mice. Meanwhile, melatonin supplementation improved significantly the reduction in OTU numbers and the diversity and richness of jejunal microbiota and the abundance of Bacteroidaeae and Prevotellaceae, as well as an increase in the Firmicutes-to-Bacteroidetes ratio and the content of Moraxellaceae and Aeromonadaceae in the jejunum of sleep deprived-mice. Moreover, melatonin supplementation reversed the change of metabolic pathway in sleep deprived-mice, including metabolism, signal transduction mechanisms and transcription etc, which were related to intestinal health. Furthermore, melatonin supplementation inverted the sleep deprivation-induced a decline of anti-inflammatory cytokines (IL-22) and an increase of the ROS and proinflammatory cytokines (IL-17) in jejunum. These findings suggested that melatonin, similar to a probiotics agent, can reverse sleep deprivation-induced small intestinal microbiota disorder by suppressing oxidative stress and inflammation response.
Review
MINIREVIEW] Development of bacteria as diagnostics and therapeutics by genetic engineering
Daejin Lim , Miryoung Song
J. Microbiol. 2019;57(8):637-643.   Published online May 11, 2019
DOI: https://doi.org/10.1007/s12275-019-9105-8
  • 12 View
  • 0 Download
  • 18 Citations
AbstractAbstract
Bacteria sense and respond to the environment, communicate, and continuously interact with their surroundings, including host bodies. For more than a century, engineers have been trying to harness the natural ability of bacteria as live biotherapeutics for the treatment of diseases. Recent advances in synthetic biology facilitate the enlargement of the repertoire of genetic parts, tools, and devices that serve as a framework for biotherapy. This review describes bacterial species developed for specific diseases shown in in vitro studies and clinical stages. Here, we focus on drug delivery by programing bacteria and discuss the challenges for safety and improvement.

Journal of Microbiology : Journal of Microbiology
TOP