Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1 "lactic acid bacteria"
Filter
Filter
Article category
Keywords
Publication year
Journal Article
Screening of small molecules attenuating biofilm formation of Acinetobacter baumannii by inhibition of ompA promoter activity
Seok Hyeon Na , Hyejin Jeon , Man Hwan Oh , Yoo Jeong Kim , Je Chul Lee
J. Microbiol. 2021;59(9):871-878.   Published online August 27, 2021
DOI: https://doi.org/10.1007/s12275-021-1394-z
  • 14 View
  • 0 Download
  • 10 Citations
AbstractAbstract
Anti-virulence therapeutic strategies are promising alternatives against drug-resistant pathogens. Outer membrane protein A (OmpA) plays a versatile role in the pathogenesis and antimicrobial resistance of Acinetobacter baumannii. Therefore, OmpA is an innovative target for anti-virulence therapy against A. baumannii. This study aimed to develop a high-throughput screening (HTS) system to discover small molecules inhibiting the ompA promoter activity of A. baumannii and screen chemical compounds using the bacterial growth-based HTS system. The ompA promoter and open reading frame of nptI fusion plasmids that controlled the expression of nptI encoding resistance to kanamycin by the ompA promoter were constructed and then transformed into A. baumannii ATCC 17978. This reporter strain was applied to screen small molecules inhibiting the ompA promoter activity in a chemical library. Of the 7,520 chemical compounds, 15 exhibited ≥ 70% growth inhibition of the report strain cultured in media containing kanamycin. Three compounds inhibited the expression of ompA and OmpA in the outer membrane of A. baumannii ATCC 17978, which subsequently reduced biofilm formation. In conclusion, our reporter strain is useful for large-scale screening of small molecules inhibiting the ompA expression in A. baumannii. Hit compounds identified by the HTS system are promising scaffolds to develop novel therapeutics against A. baumannii.

Journal of Microbiology : Journal of Microbiology
TOP