The innate immune system relies on innate immune sensors, such as pattern recognition receptors (PRRs), to detect pathogens and initiate immune responses, crucial for controlling infections but also implicated in inflammatory diseases. These innate immune sensors, including Toll-like receptors (TLRs), nod-like receptors (NLRs), RIG-I-like receptors (RLRs), absent in melanoma 2 (AIM2), and Z-DNA binding protein 1 (ZBP1) trigger signaling pathways that produce cytokines, modulating inflammation and cell death. Traditional therapies focus on directly targeting pathogens; however, host-targeting therapeutic strategies have emerged as innovative approaches to modulate innate immune sensor activity. These strategies aim to fine-tune the immune response, either enhancing antiviral defenses or mitigating hyperinflammation to prevent tissue damage. This review explores innate immune sensor-based therapeutic approaches, including inhibitors, agonists, and antagonists, that enhance antiviral defense or suppress harmful inflammation, highlighting innate immune sensors as promising targets in infectious and inflammatory disease treatment.
A well-conserved LAMMER kinase in yeast and filamentous fungi, is a dual-specificity kinase with multiple roles in fungal biology. In this study, we assessed the roles of LkhA in Aspergillus flavus, a toxigenic fungus that produces aflatoxin B1. lkhA deletion mutants exhibited defects in fungal growth, conidiophore development, and sclerotia formation. These mutants exhibited impaired tolerance to oxidative and cell wall stresses. Moreover, the absence of lkhA resulted in a decrease in aflatoxin B1 production. The kernel assay revealed that the lkhA deletion mutants exhibited reduced production of conidia and aflatoxin B1, implying that LkhA can affect fungal toxigenesis and pathogenicity. Taken together, these results demonstrate that LkhA is important for differentiation, mycotoxin production, and pathogenicity in A. flavus.
The escalating antibiotic resistance crisis poses a significant challenge to global public health, threatening the efficacy of current treatments and driving the emergence of multidrug-resistant pathogens. Among the various factors associated with bacterial antibiotic resistance, small regulatory RNAs (sRNAs) have emerged as pivotal post-transcriptional regulators which orchestrate bacterial adaptation to antibiotic pressure via diverse mechanisms. This review consolidates the current knowledge on sRNA-mediated mechanisms, focusing on drug uptake, drug efflux systems, lipopolysaccharides, cell wall modification, biofilm formation, and mutagenesis. Recent advances in transcriptomics and functional analyses have revealed novel sRNAs and their regulatory networks, expanding our understanding of resistance mechanisms. These findings highlight the potential of targeting sRNA-mediated pathways as an innovative therapeutic strategy to combat antibiotic resistance, and offer promising avenues for managing challenging bacterial infections.
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations
Citations