Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
1243 "se"
Filter
Filter
Article category
Keywords
Publication year
Authors
Journal Articles
Characterization and Comparative Genomic Analysis of vB_BceM_CEP1: A Novel Temperate Bacteriophage Infecting Burkholderia cepacia Complex.
Momen Askoura, Eslam K Fahmy, Safya E Esmaeel, Wael A H Hegazy, Aliaa Abdelghafar
J. Microbiol. 2024;62(11):1035-1055.   Published online November 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00185-2
  • 12 View
  • 0 Download
AbstractAbstract
The increasing prevalence of multidrug-resistant bacteria imminently threatens public health and jeopardizes nearly all aspects of modern medicine. The Burkholderia cepacia complex (Bcc) comprises Burkholderia cepacia and the related species of Gram-negative bacteria. Members of the Bcc group are opportunistic pathogens responsible for various chronic illnesses, including cystic fibrosis and chronic granulomatous disease. Phage therapy is emerging as a potential solution to combat the antimicrobial resistance crisis. In this study, a temperate phage vB_BceM_CEP1 was isolated from sewage and fully characterized. Transmission electron microscopy indicated that vB_BceM_CEP1 belongs to the family Peduoviridae. The isolated phage demonstrated enhanced environmental stability and antibiofilm potential. One-step growth analysis revealed a latent period of 30 min and an average burst size of 139 plaque-forming units per cell. The genome of vB_BceM_CEP1 consists of 32,486 bp with a GC content of 62.05%. A total of 40 open reading frames were annotated in the phage genome, and none of the predicted genes was annotated as tRNA. Notably, genes associated with antibiotic resistance, host virulence factors, and toxins were absent from the vB_BceM_CEP1 genome. Based on its unique phenotype and phylogeny, the isolated phage vB_BceM_CEP1 is classified as a new temperate phage with lytic activity. The findings of this study enhance our understanding of the diversity of Bcc phages.
Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli.
Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung
J. Microbiol. 2024;62(11):1023-1033.   Published online October 28, 2024
DOI: https://doi.org/10.1007/s12275-024-00175-4
  • 22 View
  • 0 Download
AbstractAbstract
Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower KM and a 1.49-fold higher turnover rate (kcat/KM) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/gxylose (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.
Different Adaption Strategies of Abundant and Rare Microbial Communities in Sediment and Water of East Dongting Lake.
Yabing Gu, Junsheng Li, Zhenghua Liu, Min Zhang, Zhaoyue Yang, Huaqun Yin, Liyuan Chai, Delong Meng, Nengwen Xiao
J. Microbiol. 2024;62(10):829-843.   Published online October 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00171-8
  • 7 View
  • 0 Download
AbstractAbstract
The dynamics of aquatic microbes is of great importance for comprehending the acclimatisation and evolution of microorganisms in lake ecology. However, little is known about the adaption strategies of microbial communities in East Dongting Lake, which had special and complexity geographical characteristics. A semi-enclosed lake area (A) and a waterway connected to Yangtze River (B) both existed in the lake zone. Here, we investigated bacterial and fungal community diversity, community network and community assembly processes in sediment and water. The results indicated that the proportion of OTU numbers and their relative abundance for rare and abundant taxa were different obviously between sediment and water, but not between bacteria and fungi. However, abundant subcommunities dominated the shifts of bacterial community diversity and structure in A region, while rare subcommunities for fungal community diversity. Compared to fungal community, bacterial network was more compact and more key stones were identified as rare taxa. In addition, stochastic processes (dispersal limitation) drove the community assembly of abundant and rare subcommunities, but the effects of deterministic processes (including variable and heterogeneous selections) affected more on rare rather than abundant taxa. Partial Mantel test further indicated that the effect of environmental factors was a stronger force in shaping abundant bacterial subcommunities (TOC, NH4+-N, TN, and ORP) and rare fungal subcommunities (ORP). Environmental factors explained more of the variation in bacterial community structure than that in fungal community structure, although they had additional effects on fungal community diversity and community assembly. Moreover, bacterial community affected the fungal community as a biotic factor in water. This research provided new insights into better understanding of microbial communities in the complex environment of the East Dongting Lake.
Lactobacillus gasseri BNR17 and Limosilactobacillus fermentum ABF21069 Ameliorate High Sucrose-Induced Obesity and Fatty Liver via Exopolysaccharide Production and β-oxidation.
Yu Mi Jo, Yoon Ji Son, Seul-Ah Kim, Gyu Min Lee, Chang Won Ahn, Han-Oh Park, Ji-Hyun Yun
J. Microbiol. 2024;62(10):907-918.   Published online October 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00173-6
  • 6 View
  • 0 Download
AbstractAbstract
Obesity and metabolic dysfunction-associated fatty liver disease (MAFLD) are prevalent metabolic disorders with substantial global health implications that are often inadequately addressed by current treatments and may have side effects. Probiotics have emerged as promising therapeutic agents owing to their beneficial effects on gut health and metabolism. This study investigated the synergistic effects of a probiotic combination of BNR17 and ABF21069 on obesity and MAFLD in C57BL/6 mice fed a high-sucrose diet. The probiotic combination significantly reduced body weight and fat accumulation compared with the high-sucrose diet. It also alleviated elevated serum leptin levels induced by a high-sucrose diet. Histological analysis revealed a significant reduction in white adipose tissue and fatty liver in the mice treated with the probiotic combination. Furthermore, increased expression of genes related to β-oxidation, thermogenesis, and lipolysis suggested enhanced metabolic activity. The probiotic groups, particularly the BNR17 group, showed an increase in fecal exopolysaccharides, along with a tendency toward a lower expression of intestinal sugar transport genes, indicating reduced sugar absorption. Additionally, inflammatory markers in the liver tissue exhibited lower expression in the ABF21069 group than in the HSD group. Despite each strain in the combination group having distinct characteristics and functions, their combined effect demonstrated synergy in mitigating obesity and MAFLD, likely through the modulation of fecal exopolysaccharides content and improvement in lipid metabolism. These findings underscore the potential of probiotic supplementation as a promising assistant therapy for managing obesity and MAFLD and provide valuable insights into its therapeutic mechanisms in metabolic disorders.
Review
Microbiome-Mucosal Immunity Nexus: Driving Forces in Respiratory Disease Progression.
Young Chae Park, Soo Yeon Choi, Yunah Cha, Hyeong Won Yoon, Young Min Son
J. Microbiol. 2024;62(9):709-725.   Published online September 6, 2024
DOI: https://doi.org/10.1007/s12275-024-00167-4
  • 57 View
  • 0 Download
AbstractAbstract
The importance of the complex interplay between the microbiome and mucosal immunity, particularly within the respiratory tract, has gained significant attention due to its potential implications for the severity and progression of lung diseases. Therefore, this review summarizes the specific interactions through which the respiratory tract-specific microbiome influences mucosal immunity and ultimately impacts respiratory health. Furthermore, we discuss how the microbiome affects mucosal immunity, considering tissue-specific variations, and its capacity in respiratory diseases containing asthma, chronic obstructive pulmonary disease, and lung cancer. Additionally, we investigate the external factors which affect the relationship between respiratory microbiome and mucosal immune responses. By exploring these intricate interactions, this review provides valuable insights into the potential for microbiome-based interventions to modulate mucosal immunity and alleviate the severity of respiratory diseases.
Journal Article
Environmental Adaptability and Roles in Ammonia Oxidation of Aerobic Ammonia-Oxidizing Microorganisms in the Surface Sediments of East China Sea.
Wenhui Li, Yu Zhen, Yuhong Yang, Daling Wang, Hui He
J. Microbiol. 2024;62(10):845-858.   Published online August 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00166-5
  • 7 View
  • 0 Download
  • 1 Citations
AbstractAbstract
This study investigated the community characteristics and environmental influencing factors of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the surface sediments of the East China Sea. The research found no consistent pattern in the richness and diversity of AOA and AOB with respect to the distance from the shore, indicating a complex interplay of factors. The expression levels of AOA amoA gene and AOB amoA gene in the surface sediments of the East China Sea ranged from 4.49 × 102 to 2.17 × 106 copies per gram of sediment and from 6.6 × 101 to 7.65 × 104 copies per gram of sediment, respectively. Salinity (31.77 to 34.53 PSU) and nitrate concentration (1.51 to 10.12 μmol/L) were identified as key environmental factors significantly affecting the AOA community, while salinity and temperature (13.71 to 19.50 °C) were crucial for the AOB community. The study also found that AOA, dominated by the Nitrosopumilaceae family, exhibited higher gene expression levels than AOB, suggesting a more significant role in ammonia oxidation. The expression of AOB was sensitive to multiple environmental factors, indicating a responsive role in nitrogen cycles and ecosystem health. The findings contribute to a better understanding of the biogeochemical processes and ecological roles of ammonia-oxidizing microorganisms in marine sediments.
Review
Role of Rab GTPases in Bacteria Escaping from Vesicle Trafficking of Host Cells.
Huiling Xu, Shengnan Wang, Xiaozhou Wang, Pu Zhang, Qi Zheng, ChangXi Qi, Xiaoting Liu, Muzi Li, Yongxia Liu, Jianzhu Liu
J. Microbiol. 2024;62(8):581-590.   Published online August 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00162-9
  • 26 View
  • 0 Download
AbstractAbstract
Most bacteria will use their toxins to interact with the host cell, causing damage to the cell and then escaping from it. When bacteria enter the cell, they will be transported via the endosomal pathway. Rab GTPases are involved in bacterial transport as major components of endosomes that bind to their downstream effector proteins. The bacteria manipulate some Rab GTPases, escape the cell, and get to survive. In this review, we will focus on summarizing the many processes of how bacteria manipulate Rab GTPases to control their escape.
Journal Article
Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29.
Xiaorong Sun, Yaoyu Cai, Dexin Wang
J. Microbiol. 2024;62(8):695-707.   Published online August 20, 2024
DOI: https://doi.org/10.1007/s12275-024-00153-w
  • 23 View
  • 0 Download
AbstractAbstract
Poly-γ-glutamic acid (γ-PGA) is a promising biopolymer for various applications. In this study, we isolated a novel γ-PGA-producing strain, Bacillus halotolerans F29. The one-factor-at-a-time method was used to investigate the influence of carbon sources, nitrogen sources, and culture parameters on γ-PGA production. The optimal carbon and nitrogen sources were sucrose and (NH4)2SO4, respectively. The optimal culture conditions for γ-PGA production were determined to be 37 °C and a pH of 5.5. Response surface methodology was used to determine the optimum medium components: 77.6 g/L sucrose, 43.0 g/L monosodium glutamate, and 2.2 g/L K2HPO4. The γ-PGA titer increased significantly from 8.5 ± 0.3 g/L to 20.7 ± 0.7 g/L when strain F29 was cultivated in the optimized medium. Furthermore, the γ-PGA titer reached 50.9 ± 1.5 g/L with a productivity of 1.33 g/L/h and a yield of 2.23 g of γ-PGA/g of L-glutamic acid with the optimized medium in fed-batch fermentation. The maximum γ-PGA titer reached 45.3 ± 1.1 g/L, with a productivity of 1.06 g/L/h when molasses was used as a carbon source. It should be noted that the γ-PGA yield in this study was the highest of all reported studies, indicating great potential for the industrial production of γ-PGA.
Review
Adenoviral Vector System: A Comprehensive Overview of Constructions, Therapeutic Applications and Host Responses.
Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(7):491-509.   Published online July 22, 2024
DOI: https://doi.org/10.1007/s12275-024-00159-4
  • 127 View
  • 0 Download
  • 1 Citations
AbstractAbstract
Adenoviral vectors are crucial for gene therapy and vaccine development, offering a platform for gene delivery into host cells. Since the discovery of adenoviruses, first-generation vectors with limited capacity have evolved to third-generation vectors flacking viral coding sequences, balancing safety and gene-carrying capacity. The applications of adenoviral vectors for gene therapy and anti-viral treatments have expanded through the use of in vitro ligation and homologous recombination, along with gene editing advancements such as CRISPR-Cas9. Current research aims to maintain the efficacy and safety of adenoviral vectors by addressing challenges such as pre-existing immunity against adenoviral vectors and developing new adenoviral vectors from rare adenovirus types and non-human species. In summary, adenoviral vectors have great potential in gene therapy and vaccine development. Through continuous research and technological advancements, these vectors are expected to lead to the development of safer and more effective treatments.
Journal Articles
Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter.
Hyeonsu Tak, Miri S Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
J. Microbiol. 2024;62(9):739-748.   Published online July 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00158-5
  • 45 View
  • 0 Download
AbstractAbstract
Two Gram-stain-negative, aerobic, motile by means of flagella, short rod-shaped bacterial strains, designated IMCC43200(T) and IMCC45268(T), were isolated from coastal seawater samples collected from the South Sea of Korea. Strains IMCC43200(T) and IMCC45268(T) shared 98.6% 16S rRNA gene sequence similarity and were closely related to Congregibacter litoralis KT71(T) (98.8% and 98.7%, respectively). Complete whole-genome sequences of IMCC43200(T) and IMCC45268(T) were 3.93 and 3.86 Mb in size with DNA G + C contents of 54.8% and 54.2%, respectively. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the two strains were 74.5% and 23.4%, respectively, revealing that they are independent species. The two strains showed ANI values of ≤ 75.8% and dDDH values of ≤ 23.0% to the type and only species of the genus Congregibacter (C. litoralis), indicating that each strain represents a novel species. Both strains contained summed feature 3 (comprising C(16:1) ω6c and/or C(16:1) ω7c) and summed feature 8 (comprising C(18:1) ω6c and/or C(18:1) ω7c) as major fatty acid constituents. The predominant isoprenoid quinone detected in both strains was ubiquinone-8 (Q-8). The major polar lipids of the two strains were phosphatidylethanolamine, phosphatidylglycerol, phospholipids, and aminolipids. Based on the phylogenetic, genomic, and phenotypic characterization, strains IMCC43200(T) and IMCC45268(T) were considered to represent two novel species within the genus Congregibacter, for which the names Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. are proposed with IMCC43200(T) (= KCTC 8133(T) = NBRC 116295(T) = CCTCC AB 2023139(T)) and IMCC45268(T) (= KCTC 92921(T) = NBRC 116135(T)) as the type strains, respectively.
Deletion of IRC19 Causes Defects in DNA Double-Strand Break Repair Pathways in Saccharomyces cerevisiae.
Ju-Hee Choi, Oyungoo Bayarmagnai, Sung-Ho Bae
J. Microbiol. 2024;62(9):749-758.   Published online July 12, 2024
DOI: https://doi.org/10.1007/s12275-024-00152-x
  • 34 View
  • 0 Download
AbstractAbstract
DNA double-strand break (DSB) repair is a fundamental cellular process crucial for maintaining genome stability, with homologous recombination and non-homologous end joining as the primary mechanisms, and various alternative pathways such as single-strand annealing (SSA) and microhomology-mediated end joining also playing significant roles under specific conditions. IRC genes were previously identified as part of a group of genes associated with increased levels of Rad52 foci in Saccharomyces cerevisiae. In this study, we investigated the effects of IRC gene mutations on DSB repair, focusing on uncharacterized IRC10, 19, 21, 22, 23, and 24. Gene conversion (GC) assay revealed that irc10Δ, 22Δ, 23Δ, and 24Δ mutants displayed modest increases in GC frequencies, while irc19Δ and irc21Δ mutants exhibited significant reductions. Further investigation revealed that deletion mutations in URA3 were not generated in irc19Δ mutant cells following HO-induced DSBs. Additionally, irc19Δ significantly reduced frequency of SSA, and a synergistic interaction between irc19Δ and rad52Δ was observed in DSB repair via SSA. Assays to determine the choice of DSB repair pathways indicated that Irc19 is necessary for generating both GC and deletion products. Overall, these results suggest a potential role of Irc19 in DSB repair pathways, particularly in end resection process.
Cultivation of Diverse Novel Marine Bacteria from Deep Ocean Sediment Using Spent Culture Supernatant of Ca. Bathyarchaeia Enrichment.
Sidra Erum Ishaq, Tariq Ahmad, Lewen Liang, Ruize Xie, Tiantian Yu, Yinzhao Wang, Fengping Wang
J. Microbiol. 2024;62(8):611-625.   Published online July 10, 2024
DOI: https://doi.org/10.1007/s12275-024-00145-w
  • 23 View
  • 0 Download
AbstractAbstract
Most microorganisms resist pure cultivation under conventional laboratory conditions. One of the primary issues for this un-culturability is the absence of biologically produced growth-promoting factors in traditionally defined growth media. However, whether cultivating microbes by providing spent culture supernatant of pivotal microbes in the growth medium can be an effective approach to overcome this limitation is still an under-explored area of research. Here, we used the spent culture medium (SCM) method to isolate previously uncultivated marine bacteria and compared the efficiency of this method with the traditional cultivation (TC) method. In the SCM method, Ca. Bathyarchaeia-enriched supernatant (10%) was used along with recalcitrant organic substrates such as lignin, humic acid, and organic carbon mixture. Ca. Bathyarchaeia, a ubiquitous class of archaea, have the capacity to produce metabolites, making their spent culture supernatant a key source to recover new bacterial stains. Both cultivation methods resulted in the recovery of bacterial species from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota. However, our SCM approach also led to the recovery of species from rarely cultivated groups, such as Planctomycetota, Deinococcota, and Balneolota. In terms of the isolation of new taxa, the SCM method resulted in the cultivation of 80 potential new strains, including one at the family, 16 at the genus, and 63 at the species level, with a novelty ratio of ~ 35% (80/219). In contrast, the TC method allowed the isolation of ~ 10% (19/171) novel strains at species level only. These findings suggest that the SCM approach improved the cultivation of novel and diverse bacteria.
Non-Mitochondrial Aconitase-2 Mediates the Transcription of Nuclear-Encoded Electron Transport Chain Genes in Fission Yeast.
Ho-Jung Kim, Soo-Yeon Cho, Soo-Jin Jung, Yong-Jun Cho, Jung-Hye Roe, Kyoung-Dong Kim
J. Microbiol. 2024;62(8):639-648.   Published online June 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00147-8
  • 21 View
  • 0 Download
AbstractAbstract
Aconitase-2 (Aco2) is present in the mitochondria, cytosol, and nucleus of fission yeast. To explore its function beyond the well-known role in the mitochondrial tricarboxylic acid (TCA) cycle, we conducted genome-wide profiling using the aco2ΔNLS mutant, which lacks a nuclear localization signal (NLS). The RNA sequencing (RNA-seq) data showed a general downregulation of electron transport chain (ETC) genes in the aco2ΔNLS mutant, except for those in the complex II, leading to a growth defect in respiratory-prone media. Complementation analysis with non-catalytic Aco2 [aco2ΔNLS + aco2(3CS)], where three cysteines were substituted with serine, restored normal growth and typical ETC gene expression. This suggests that Aco2's catalytic activity is not essential for its role in ETC gene regulation. Our mRNA decay assay indicated that the decrease in ETC gene expression was due to transcriptional regulation rather than changes in mRNA stability. Additionally, we investigated the Php complex's role in ETC gene regulation and found that ETC genes, except those within complex II, were downregulated in php3Δ and php5Δ strains, similar to the aco2ΔNLS mutant. These findings highlight a novel role for nuclear aconitase in ETC gene regulation and suggest a potential connection between the Php complex and Aco2.
Delineating the Acquired Genetic Diversity and Multidrug Resistance in Alcaligenes from Poultry Farms and Nearby Soil.
Abhilash Bhattacharjee, Anil Kumar Singh
J. Microbiol. 2024;62(7):511-523.   Published online June 21, 2024
DOI: https://doi.org/10.1007/s12275-024-00129-w
  • 88 View
  • 0 Download
AbstractAbstract
Alcaligenes faecalis is one of the most important and clinically significant environmental pathogens, increasing in importance due to its isolation from soil and nosocomial environments. The Gram-negative soil bacterium is associated with skin endocarditis, bacteremia, dysentery, meningitis, endophthalmitis, urinary tract infections, and pneumonia in patients. With emerging antibiotic resistance in A. faecalis, it has become crucial to understand the origin of such resistance genes within this clinically significant environmental and gut bacterium. In this research, we studied the impact of antibiotic overuse in poultry and its effect on developing resistance in A. faecalis. We sampled soil and faecal materials from five poultry farms, performed whole genome sequencing & analysis and identified four strains of A. faecalis. Furthermore, we characterized the genes in the genomic islands of A. faecalis isolates. We found four multidrug-resistant A. faecalis strains that showed resistance against vancomycin (MIC >1000 μg/ml), ceftazidime (50 μg/ml), colistin (50 μg/ml) and ciprofloxacin (50 μg/ml). From whole genome comparative analysis, we found more than 180 resistance genes compared to the reference sequence. Parts of our assembled contigs were found to be similar to different bacteria which included pbp1A and pbp2 imparting resistance to amoxicillin originally a part of Helicobacter and Bordetella pertussis. We also found the Mycobacterial insertion element IS6110 in the genomic islands of all four genomes. This prominent insertion element can be transferred and induce resistance to other bacterial genomes. The results thus are crucial in understanding the transfer of resistance genes in the environment and can help in developing regimes for antibiotic use in the food and poultry industry.
Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone.
Qiudi Zhou, Lihui Feng
J. Microbiol. 2024;62(5):367-379.   Published online June 17, 2024
DOI: https://doi.org/10.1007/s12275-024-00141-0
  • 21 View
  • 0 Download
AbstractAbstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.

Journal of Microbiology : Journal of Microbiology
TOP