Skip Navigation
Skip to contents

Journal of Microbiology : Journal of Microbiology

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
153 "pat"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Minireview
Advances in functional analysis of the microbiome: Integrating metabolic modeling, metabolite prediction, and pathway inference with Next-Generation Sequencing data
Sungwon Jung
J. Microbiol. 2025;63(1):e.2411006.   Published online January 24, 2025
DOI: https://doi.org/10.71150/jm.2411006
  • 558 View
  • 71 Download
AbstractAbstract PDF

This review explores current advancements in microbiome functional analysis enabled by next-generation sequencing technologies, which have transformed our understanding of microbial communities from mere taxonomic composition to their functional potential. We examine approaches that move beyond species identification to characterize microbial activities, interactions, and their roles in host health and disease. Genome-scale metabolic models allow for in-depth simulations of metabolic networks, enabling researchers to predict microbial metabolism, growth, and interspecies interactions in diverse environments. Additionally, computational methods for predicting metabolite profiles offer indirect insights into microbial metabolic outputs, which is crucial for identifying biomarkers and potential therapeutic targets. Functional pathway analysis tools further reveal microbial contributions to metabolic pathways, highlighting alterations in response to environmental changes and disease states. Together, these methods offer a powerful framework for understanding the complex metabolic interactions within microbial communities and their impact on host physiology. While significant progress has been made, challenges remain in the accuracy of predictive models and the completeness of reference databases, which limit the applicability of these methods in under-characterized ecosystems. The integration of these computational tools with multi-omic data holds promise for personalized approaches in precision medicine, allowing for targeted interventions that modulate the microbiome to improve health outcomes. This review highlights recent advances in microbiome functional analysis, providing a roadmap for future research and translational applications in human health and environmental microbiology.

Journal Articles
Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection
Xiaomin Lin, Chun Lin, Xin Li, Fen Yao, Xiaoling Guo, Meimei Wang, Mi Zeng, Yumeng Yuan, Qingdong Xie, Xudong Huang, Xiaoyang Jiao
J. Microbiol. 2024;62(12):1113-1124.   Published online December 2, 2024
DOI: https://doi.org/10.1007/s12275-024-00190-5
  • 58 View
  • 0 Download
AbstractAbstract
To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.
Comparative Secretory Efficiency of Two Chitosanase Signal Peptides from Bacillus subtilis in Escherichia coli
Tae-Yang Eom, Yehui Gang, Youngdeuk Lee, Yoon-Hyeok Kang, Eunyoung Jo, Svini Dileepa Marasinghe, Heung Sik Park, Gun-Hoo Park, Chulhong Oh
J. Microbiol. 2024;62(12):1155-1164.   Published online November 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00186-1
  • 44 View
  • 0 Download
AbstractAbstract
The production of recombinant proteins in Escherichia coli is often challenged by cytoplasmic expression due to proteolytic degradation and inclusion body formation. Extracellular expression can overcome these problems by simplifying downstream processing and improving protein yields. This study aims to compare the efficiency of two Bacillus subtilis chitosanase signal peptides in mediating extracellular secretion in E. coli. We identified a naturally occurring mutant signal peptide (mCsn2-SP) from B. subtilis CH2 chitosanase (CH2CSN), which is characterized by a deletion of six amino acids in the N-region relative to the signal peptide (Csn1-SP) from B. subtilis CH1 chitosanase (CH1CSN). The CH1CSN and CH2CSN genes were cloned into the pET-11a vector and protein secretion was evaluated in E. coli BL21(DE3) host cells. Expression was induced with 0.1 mM and 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) at 30 °C for one and three days. CH2CSN showed higher secretion levels compared to CH1CSN under all experimental conditions, especially with 0.1 mM IPTG induction for 3 days, which resulted in a 2.37-fold increase in secretion. Furthermore, it was demonstrated that mCsn2-SP is capable of secreting human Cu,Zn-superoxide dismutase (hSOD) in E. coli BL21(DE3) and successfully translocating it to the periplasmic region. This study represents the inaugural investigation into the utilisation of a naturally modified signal peptide, thereby corroborating the assertion that signal peptide deletion variants can influence protein secretion efficiency. Furthermore, the findings substantiate the proposition that such variants can serve as a viable alternative for the secretion of heterologous proteins in E. coli.
Investigation of Bottleneck Enzyme Through Flux Balance Analysis to Improve Glycolic Acid Production in Escherichia coli
Jungyeon Kim, Ye-Bin Kim, Ju-Young Kim, Min-Ju Seo, Soo-Jin Yeom, Bong Hyun Sung
J. Microbiol. 2024;62(11):1023-1033.   Published online October 28, 2024
DOI: https://doi.org/10.1007/s12275-024-00175-4
  • 82 View
  • 0 Download
AbstractAbstract
Amid rising environmental concerns, attempts have been made to produce glycolic acid (GA) using microbial processes with renewable carbon resources instead of using chemicals. The Dahms pathway for GA production uses xylose as a substrate and consists of relatively simple enzymatic steps. However, employing it leads to a decrease in cell growth and GA productivity. Systematically identifying and addressing metabolic bottlenecks in the Dahms pathway are essential for efficient glycolic acid (GA) production have not yet been performed. Through metabolic flux balance analysis, we found that insufficient aldehyde dehydrogenase (AldA) activity lowers GA production and negatively affects cell growth due to reduced energy production. Thus, we discovered a novel AldA isolated from Buttiauxella agrestis (BaAldA) demonstrated a 1.69-fold lower KM and a 1.49-fold higher turnover rate (kcat/KM) than AldA from Escherichia coli (EcAldA). GA production in E. coli harboring BaAldA was 1.59 times higher than in the original strain. Fed-batch fermentation of E. coli harboring BaAldA produced 22.70 g/L GA with a yield of 0.497 g/gxylose (98.2% of the theoretical maximum yield in the Dahms pathway), showing a higher final yield for GA than previously reported in E. coli. Our novel BaAldA enzyme shows great potential for the production of GA using microorganisms or enzymes. Furthermore, our approach to identifying metabolic bottlenecks using flux balance analysis could be utilized to enhance the microbial production of various desirable products in future studies.
Review
Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement
Sagnik Saha, Manojit Bhattacharya, Sang-Soo Lee, Chiranjib Chakraborty
J. Microbiol. 2024;62(10):811-828.   Published online September 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00168-3
  • 50 View
  • 0 Download
AbstractAbstract
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.
Journal Articles
In Silico Intensive Analysis for the E4 Gene Evolution of Human Adenovirus Species D
Chanhee Lee, Anyeseu Park, Jeong Yoon Lee
J. Microbiol. 2024;62(5):409-418.   Published online April 30, 2024
DOI: https://doi.org/10.1007/s12275-024-00132-1
  • 52 View
  • 0 Download
AbstractAbstract
Adenovirus (Ad) is a ubiquitous pathogen capable of infecting a wide range of animals and humans. Human Adenovirus (HAdV) can cause severe infection, particularly in individuals with compromised immune systems. To date, over 110 types of HAdV have been classified into seven species from A to G, with the majority belonging to the human adenovirus species D (HAdV-D). In the HAdV-D, the most significant factor for the creation of new adenovirus types is homologous recombination between viral genes involved in determining the virus tropism or evading immune system of host cells. The E4 gene, consisting of seven Open Reading Frames (ORFs), plays a role in both the regulation of host cell metabolism and the replication of viral genes. Despite long-term studies, the function of each ORF remains unclear. Based on our updated information, ORF2, ORF3, and ORF4 have been identified as regions with relatively high mutations compared to other ORFs in the E4 gene, through the use of in silico comparative analysis. Additionally, we managed to visualize high mutation sections, previously undetectable at the DNA level, through a powerful amino acid sequence analysis tool known as proteotyping. Our research has revealed the involvement of the E4 gene in the evolution of human adenovirus, and has established accurate sequence information of the E4 gene, laying the groundwork for further research.
Effects of Light and Dark Conditions on the Transcriptome of Aging Cultures of Candidatus Puniceispirillum marinum IMCC1322
Ji Hyen Lee, Hyun-Myung Oh
J. Microbiol. 2024;62(4):297-314.   Published online April 25, 2024
DOI: https://doi.org/10.1007/s12275-024-00125-0
  • 55 View
  • 0 Download
  • 1 Web of Science
AbstractAbstract
To elucidate the function of proteorhodopsin in Candidatus Puniceispirillum marinum strain IMCC1322, a cultivated representative of SAR116, we produced RNA-seq data under laboratory conditions. We examined the transcriptomes of six different cultures, including sets of expression changes under constant dark (DD), constant light (LL), and diel-cycled (LD; 14 h light: 10 h dark) conditions at the exponential and stationary/death phases. Prepared mRNA extracted from the six samples was analyzed on the Solexa Genome Analyzer with 36 cycles. Differentially expressed genes on the IMCC1322 genome were distinguished as four clusters by K-mean clustering and each CDS (n = 2546) was annotated based on the KEGG BRITE hierarchy. Cluster 0 (n = 1573) covered most constitutive genes including proteorhodopsin, retinoids, and glycolysis/TCA cycle. Cluster 1 genes (n = 754) were upregulated in stationary/death phase under constant dark conditions and included genes associated with bacterial defense, membrane transporters, nitrogen metabolism, and senescence signaling. Cluster 2 genes (n = 197) demonstrated upregulation in exponential phase cultures and included genes involved in genes for oxidative phosphorylation, translation factors, and transcription machinery. Cluster 3 (n = 22) contained light-stimulated upregulated genes expressed under stationary/phases. Stringent response genes belonged to cluster 2, but affected genes spanned various cellular processes such as amino acids, nucleotides, translation, transcription, glycolysis, fatty acids, and cell wall components. The coordinated expression of antagonistic stringent genes, including mazG, ppx/gppA, and spoT/relA may provide insight into the controlled cultural response observed between constant light and constant dark conditions in IMCC1322 cultures, regardless of cell numbers and biomass.
Review
Application of Microbiome‑Based Therapies in Chronic Respiratory Diseases
Se Hee Lee, Jang Ho Lee, Sei Won Lee
J. Microbiol. 2024;62(3):201-216.   Published online April 18, 2024
DOI: https://doi.org/10.1007/s12275-024-00124-1
  • 79 View
  • 1 Download
  • 3 Web of Science
  • 3 Crossref
AbstractAbstract
The application of microbiome-based therapies in various areas of human disease has recently increased. In chronic respiratory disease, microbiome-based clinical applications are considered compelling options due to the limitations of current treatments. The lung microbiome is ecologically dynamic and afected by various conditions, and dysbiosis is associated with disease severity, exacerbation, and phenotype as well as with chronic respiratory disease endotype. However, it is not easy to directly modulate the lung microbiome. Additionally, studies have shown that chronic respiratory diseases can be improved by modulating gut microbiome and administrating metabolites. Although the composition, diversity, and abundance of the microbiome between the gut and lung are considerably diferent, modulation of the gut microbiome could improve lung dysbiosis. The gut microbiome infuences that of the lung via bacterial-derived components and metabolic degradation products, including short-chain fatty acids. This phenomenon might be associated with the cross-talk between the gut microbiome and lung, called gut-lung axis. There are multiple alternatives to modulate the gut microbiome, such as prebiotics, probiotics, and postbiotics ingestion and fecal material transplantation. Several studies have shown that high-fber diets, for example, present benefcial efects through the production of short-chain fatty acids. Additionally, genetically modifed probiotics to secrete some benefcial molecules might also be utilized to treat chronic respiratory diseases. Further studies on microbial modulation to regulate immunity and potentiate conventional pharmacotherapy will improve microbiome modulation techniques, which will develop as a new therapeutic area in chronic respiratory diseases.

Citations

Citations to this article as recorded by  
  • Bacteria and Allergic Diseases
    Svetlana V. Guryanova
    International Journal of Molecular Sciences.2024; 25(19): 10298.     CrossRef
  • The emerging roles of microbiome and short-chain fatty acids in the pathogenesis of bronchopulmonary dysplasia
    Yuan Gao, Kaixuan Wang, Zupan Lin, Shujing Cai, Aohui Peng, Le He, Hui Qi, Zhigang Jin, Xubo Qian
    Frontiers in Cellular and Infection Microbiology.2024;[Epub]     CrossRef
  • Host-Associated Microbiome
    Woo Jun Sul
    Journal of Microbiology.2024; 62(3): 135.     CrossRef
Journal Articles
CA‑CAS‑01‑A: A Permissive Cell Line for Isolation and Live Attenuated Vaccine Development Against African Swine Fever Virus
Seung-Chul Lee , Yongkwan Kim , Ji-Won Cha , Kiramage Chathuranga , Niranjan Dodantenna , Hyeok-Il Kwon , Min Ho Kim , Weonhwa Jheong , In-Joong Yoon , Joo Young Lee , Sung-Sik Yoo , Jong-Soo Lee
J. Microbiol. 2024;62(2):125-134.   Published online March 13, 2024
DOI: https://doi.org/10.1007/s12275-024-00116-1
  • 60 View
  • 0 Download
  • 1 Web of Science
  • 1 Crossref
AbstractAbstract
African swine fever virus (ASFV) is the causative agent of the highly lethal African swine fever disease that affects domestic pigs and wild boars. In spite of the rapid spread of the virus worldwide, there is no licensed vaccine available. The lack of a suitable cell line for ASFV propagation hinders the development of a safe and effective vaccine. For ASFV propagation, primary swine macrophages and monocytes have been widely studied. However, obtaining these cells can be time-consuming and expensive, making them unsuitable for mass vaccine production. The goal of this study was to validate the suitability of novel CA-CAS-01-A (CAS-01) cells, which was identified as a highly permissive cell clone for ASFV replication in the MA-104 parental cell line for live attenuated vaccine development. Through a screening experiment, maximum ASFV replication was observed in the CAS-01 cell compared to other sub-clones of MA-104 with 14.89 and log10 7.5 ± 0.15 Ct value and TCID50/ ml value respectively. When CAS-01 cells are inoculated with ASFV, replication of ASFV was confirmed by Ct value for ASFV DNA, HAD50/ ml assay, TCID50/ ml assay, and cytopathic effects and hemadsoption were observed similar to those in primary porcine alveolar macrophages after 5th passage. Additionally, we demonstrated stable replication and adaptation of ASFV over the serial passage. These results suggest that CAS-01 cells will be a valuable and promising cell line for ASFV isolation, replication, and development of live attenuated vaccines.

Citations

Citations to this article as recorded by  
  • Development and characterization of high-efficiency cell-adapted live attenuated vaccine candidate against African swine fever
    Min Ho Kim, Ashan Subasinghe, Yongkwan Kim, Hyeok-Il Kwon, Yehjin Cho, Kiramage Chathuranga, Ji-Won Cha, Ji-Yoon Moon, Ji-Hyeon Hong, Jin Kim, Seung-Chul Lee, Niranjan Dodantenna, Nuwan Gamage, W. A. Gayan Chathuranga, Yeonji Kim, In-Joong Yoon, Joo Young
    Emerging Microbes & Infections.2024;[Epub]     CrossRef
Development of a Novel Korean H9‑Specific rRT‑PCR Assay and Its Application for Avian Influenza Virus Surveillance in Korea
Mingeun Sagong , Yong-Myung Kang , Na Yeong Kim , Eun Bi Noh , Gyeong-Beom Heo , Se-Hee An , Youn-Jeong Lee , Young Ki Choi , Kwang-Nyeong Lee
J. Microbiol. 2023;61(10):929-936.   Published online November 27, 2023
DOI: https://doi.org/10.1007/s12275-023-00088-8
  • 65 View
  • 0 Download
  • 1 Crossref
AbstractAbstract
Since the 2000s, the Y439 lineage of H9N2 avian influenza virus (AIV) has been the predominant strain circulating in poultry in Korea; however, in 2020, the Y280 lineage emerged and spread rapidly nationwide, causing large economic losses. To prevent further spread and circulation of such viruses, rapid detection and diagnosis through active surveillance programs are crucial. Here, we developed a novel H9 rRT-PCR assay that can detect a broad range of H9Nx viruses in situations in which multiple lineages of H9 AIVs are co-circulating. We then evaluated its efficacy using a large number of clinical samples. The assay, named the Uni Kor-H9 assay, showed high sensitivity for Y280 lineage viruses, as well as for the Y439 lineage originating in Korean poultry and wild birds. In addition, the assay showed no cross-reactivity with other subtypes of AIV or other avian pathogens. Furthermore, the Uni Kor-H9 assay was more sensitive, and had higher detection rates, than reference H9 rRT-PCR methods when tested against a panel of domestically isolated H9 AIVs. In conclusion, the novel Uni Kor-H9 assay enables more rapid and efficient diagnosis than the “traditional” method of virus isolation followed by subtyping RT-PCR. Application of the new H9 rRT-PCR assay to AI active surveillance programs will help to control and manage Korean H9 AIVs more efficiently.

Citations

Citations to this article as recorded by  
  • Development and evaluation of a multiplex real-time RT-PCR assay for simultaneous detection of H5, H7, and H9 subtype avian influenza viruses
    Se-Hee An, Na-Yeong Kim, Gyeong-Beom Heo, Yong-Myung Kang, Youn-Jeong Lee, Kwang-Nyeong Lee
    Journal of Virological Methods.2024; 327: 114942.     CrossRef
Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov., Isolated from Freshwater and Soil
Yong-Seok Kim , Eun-Mi Hwang , Chang-Myeong Jeong , Chang-Jun Cha
J. Microbiol. 2023;61(10):891-901.   Published online October 18, 2023
DOI: https://doi.org/10.1007/s12275-023-00081-1
  • 71 View
  • 0 Download
  • 3 Web of Science
  • 5 Crossref
AbstractAbstract
Two novel bacterial strains CJ74T and CJ75T belonging to the genus Flavobacterium were isolated from freshwater of Han River and ginseng soil, South Korea, respectively. Strain CJ74T was Gram-stain-negative, aerobic, rod-shaped, non-motile, and non-flagellated, and did not produce flexirubin-type pigments. Strain CJ75T was Gram-stain-negative, aerobic, rodshaped, motile by gliding, and non-flagellated, and produced flexirubin-type pigments. Both strains were shown to grow optimally at 30 °C in the absence of NaCl on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ74T and CJ75T belonged to the genus Flavobacterium and were most closely related to Flavobacterium niveum TAPW14T and Flavobacterium foetidum CJ42T with 96.17% and 97.29% 16S rRNA sequence similarities, respectively. Genomic analyses including the reconstruction of phylogenomic tree, average nucleotide identity, and digital DNA-DNA hybridization suggested that they were novel species of the genus Flavobacterium. Both strains contained menaquinone 6 (MK-6) as the primary respiratory quinone and phosphatidylethanolamine as a major polar lipid. The predominant fatty acids of both strains were iso-C15:0 and summed feature 3 ( C16:1 ω7c and/or C16: 1 ω6c). Based on the polyphasic taxonomic study, strains CJ74T and CJ75T represent novel species of the genus Flavobacterium, for which names Flavobacterium psychrotrophum sp. nov. and Flavobacterium panacagri sp. nov. are proposed, respectively. The type strains are CJ74T (=KACC 19819T =JCM 32889T) and CJ75T (=KACC 23149T =JCM 36132T).

Citations

Citations to this article as recorded by  
  • Discovery of two novel Flavobacterium species with potential for complex polysaccharide degradation
    Xu-Dong Lian, Yong Guan, Yue Jiang, Dong-Heui Kwak, Mi-Kyung Lee, Zhun Li
    Scientific Reports.2025;[Epub]     CrossRef
  • Ammonia-oxidizing activity and microbial structure of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and complete ammonia oxidizers in biofilm systems with different salinities
    Haojie Qiu, Weihua Zhao, Yingying Qin, Yanyan Wang, Meng Bai, Shaoqing Su, Chao Wang, Zhisheng Zhao
    Bioresource Technology.2025; : 132248.     CrossRef
  • Congregibacter variabilis sp. nov. and Congregibacter brevis sp. nov. Within the OM60/NOR5 Clade, Isolated from Seawater, and Emended Description of the Genus Congregibacter
    Hyeonsu Tak, Miri S. Park, Hyerim Cho, Yeonjung Lim, Jang-Cheon Cho
    Journal of Microbiology.2024; 62(9): 739.     CrossRef
  • Flavobacterium rivulicola sp. nov., Isolated from a Freshwater Stream
    Sumin Kim, Miri S. Park, Ilnam Kang, Jang-Cheon Cho
    Current Microbiology.2024;[Epub]     CrossRef
  • Validation List no. 218. Valid publication of new names and new combinations effectively published outside the IJSEM
    Aharon Oren, Markus Göker
    International Journal of Systematic and Evolutionary Microbiology .2024;[Epub]     CrossRef
Review
The Fatal Role of Enterohaemorrhagic Escherichia coli Shiga Toxin‑associated Extracellular Vesicles in Host Cells
Kyung-Soo Lee , Jun-Young Park , Yu-Jin Jeong , Moo-Seung Lee
J. Microbiol. 2023;61(8):715-727.   Published online September 4, 2023
DOI: https://doi.org/10.1007/s12275-023-00066-0
  • 53 View
  • 0 Download
  • 2 Web of Science
  • 2 Crossref
AbstractAbstract
Enterohemorrhagic Escherichia coli (EHEC) is a specific subset of Shiga toxin-producing Escherichia coli (STEC) strains that are characterized by their ability to cause bloody diarrhea (hemorrhagic colitis) and potentially life-threatening, extraintestinal complications such as hemolytic uremic syndrome (HUS), which is associated with acute renal failure., contributing to severe clinical outcomes. The Shiga toxins (Stxs), produced by EHEC, are primary virulence factors. These potent cytotoxins are composed of one enzymatically active A subunit (StxA) and five receptor-binding B subunits (StxB). Although the toxins are primarily associated with cytotoxic effects, they also elicit other pathogenic consequences due to their induction of a number of biological processes, including apoptosis through ER-stress, pro-inflammatory responses, autophagy, and post-translational modification (PTM). Moreover, several studies have reported the association between Stxs and extracellular vesicles (EVs), including microvesicles and exosomes, demonstrating that Stx-containing EVs secreted by intoxicated macrophages are taken up by recipient cells, such as toxin-sensitive renal proximal tubular epithelial cells. This mechanism likely contributes to the spreading of Stxs within the host, and may exacerbate gastrointestinal illnesses and kidney dysfunction. In this review, we summarize recent findings relating to the host responses, in different types of cells in vitro and in animal models, mediated by Stxs-containing exosomes. Due to their unique properties, EVs have been explored as therapeutic agents, drug delivery systems, and diagnostic tools. Thus, potential therapeutic applications of EVs in EHEC Stxs-mediated pathogenesis are also briefly reviewed.

Citations

Citations to this article as recorded by  
  • Estimation of IL-8 and TNF-α Levels in Pediatric Diarrhea Patients Infected with Enterohemorrhagic E. coli O157:H7
    Safaa A. AL-Isawi, Shaimaa Jassim Alsultany
    Medical Journal of Babylon.2024; 21(3): 533.     CrossRef
  • Structural basis to identify a target site in Shiga toxin for the inhibitor discovery against growth of Shiga toxin-producing E. coli
    Anuja Prabhudesai, Samir Shaikh, Kayasth Zarna Ashwinbhai, Reeshu Gupta
    Bulletin of the National Research Centre.2024;[Epub]     CrossRef
Editorial
Editorial] Bacterial Regulatory Mechanisms for the Control of Cellular Processes: Simple Organisms’ Complex Regulation
Jin-Won Lee
J. Microbiol. 2023;61(3):273-276.   Published online April 3, 2023
DOI: https://doi.org/10.1007/s12275-023-00036-6
  • 78 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
Bacteria employ a diverse array of cellular regulatory mechanisms to successfully adapt and thrive in ever-changing environments, including but not limited to temperature changes, fluctuations in nutrient availability, the presence or absence of electron acceptors such as oxygen, the availability of metal ions crucial for enzyme activity, and the existence of antibiotics. Bacteria can virtually modulate any step of gene expression from transcr!ptional initiation to posttranslational modification of a protein for the control of cellular processes. Furthermore, one gene regulator often controls another in a complex gene regulatory network. Thus, it is not easy to fully understand the intricacies of bacterial regulatory mechanisms in various environments. In this special issue, while acknowledging the challenge of covering all aspects of bacterial regulatory mechanisms across diverse environments, seven review articles are included to provide insight into the recent progress in understanding such mechanisms from different perspectives: positive regulatory mechanisms by secondary messenger (cAMP receptor protein), two-component signal transduction mechanisms (Rcs and Cpx), diverse regulatory mechanisms by a specific environmental factor in specific bacteria (oxygen availability in Mycobacterium and manganese ion availability in Salmonella), diverse regulatory mechanisms by a specific environmental factor (temperature and antibiotics), and regulatory mechanisms by antibiotics in cell wall synthesis. Bacteria, as ubiquitous organisms that can be found in almost every environment, carry out complex cellular processes that allow them to survive and thrive in a variety of different conditions despite their small size and relative simplicity. One of the key factors that allows bacteria to carry out these complex processes is their ability to regulate gene expression through various mechanisms. Gene expression is a fundamental biological process by which the genetic information encoded in a gene is transcribed into an RNA molecule and subsequently translated into a functional gene product, often a protein. Furthermore, the activity levels of proteins may further be altered by posttranslational modification. Regulation of gene expression refers to the control of the amount and timing of gene expression, and thus it can be divided into transcr!ptional, translational, and posttranslational levels.

Citations

Citations to this article as recorded by  
  • The PhoBR two-component system upregulates virulence in Aeromonas dhakensis C4–1
    Wei Feng, Xuesong Li, Nuo Yang, Lixia Fan, Guiying Guo, Jun Xie, Xiuqing Cai, Yuqi Meng, Jifeng Zeng, Yu Han, Jiping Zheng
    Aquaculture.2025; 595: 741665.     CrossRef
  • Molecular mechanisms of cold stress response in cotton: Transcriptional reprogramming and genetic strategies for tolerance
    Washu Dev, Fahmida Sultana, Hongge Li, Daowu Hu, Zhen Peng, Shoupu He, Haobo Zhang, Muhammad Waqas, Xiaoli Geng, Xiongming Du
    Plant Science.2025; 352: 112390.     CrossRef
  • PhoPQ-mediated lipopolysaccharide modification governs intrinsic resistance to tetracycline and glycylcycline antibiotics in Escherichia coli
    Byoung Jun Choi, Umji Choi, Dae-Beom Ryu, Chang-Ro Lee, Mehrad Hamidian, You-Hee Cho
    mSystems.2024;[Epub]     CrossRef
  • Navigating the signaling landscape of Ralstonia solanacearum: a study of bacterial two-component systems
    Mohit Yadav, Janhavi Sathe, Valentina Teronpi, Aditya Kumar
    World Journal of Microbiology and Biotechnology.2024;[Epub]     CrossRef
Journal Article
Epidemiological Characteristics of Norovirus Outbreaks in Shenyang from 2017 to 2021
Ying Qi , Xinxin Dong , Xiaowei Cheng , Han Xu , Jin Wang , Bing Wang , Ye Chen , Baijun Sun , Linlin Zhang , Yan Yao
J. Microbiol. 2023;61(4):471-478.   Published online March 27, 2023
DOI: https://doi.org/10.1007/s12275-023-00033-9
  • 60 View
  • 0 Download
  • 4 Web of Science
  • 5 Crossref
AbstractAbstract
Norovirus is one of the leading causes of acute gastroenteritis outbreaks worldwide. This study aimed to identify the epidemiological characteristics of norovirus outbreaks and to provide evidence for public health entities. Specimens and epidemiological survey data were collected to determine if there were differences in the attack rate of norovirus in terms of the year, season, transmission route, exposure setting, and region and to determine whether there were relationships between the reporting interval, the number of illnesses in a single outbreak and the duration of the outbreak. Norovirus outbreaks were reported throughout the year, with seasonal characteristics (i.e., high rates in spring and winter). Among all regions in Shenyang with the exception of Huanggu and Liaozhong, norovirus outbreaks had been reported, and the primary genotype was GII.2[P16]. Vomiting was the most common symptom. The main places of occurrence were childcare institutions and schools. The person-to-person route was the main transmission route. The median duration of norovirus was 3 days (IQR [interquartile range]: 2–6 days), the median reporting interval was 2 days (IQR: 1–4 days), the median number of illnesses in a single outbreak was 16 (IQR: 10–25); there was a positive correlation between these parameters. Norovirus surveillance and genotyping studies still need to be further strengthened to increase knowledge regarding the pathogens and their variant characteristics, to better characterize the patterns of norovirus outbreaks and to provide information for outbreak prevention. Norovirus outbreaks should be detected, reported and handled early. Public health entities and the government should develop corresponding measures for different seasons, transmission routes, exposure settings, and regions.

Citations

Citations to this article as recorded by  
  • Surge of acute gastroenteritis outbreaks due to rising norovirus GII.4 transmission in Seoul childcare centers and kindergartens in 2022 compared to 2019–2021
    Euncheol Son, Young-Hoon Kim
    Archives of Virology.2024;[Epub]     CrossRef
  • Development and Evaluation of a Rapid GII Norovirus Detection Method Based on CRISPR-Cas12a
    Xinyi Hu, Pei He, Tong Jiang, Jilu Shen
    Polish Journal of Microbiology.2024; 73(1): 89.     CrossRef
  • Improving knowledge, attitude and practice on norovirus infection diarrhea among staff of kindergartens and schools: a before-after study
    Hongxin Lyu, Dongmei Liang, Riyan Luo, Yunlong Feng, Lei Liu, Sixia Yang, Fuling Cai, Zhen Zhang, Huawei Xiong
    BMC Public Health.2024;[Epub]     CrossRef
  • Epidemiological and Molecular Genetic Analysis of Outbreaks of Acute Intestinal Infections in the Khabarovsk Krai in 2022
    Elena Yu. Sapega, Liudmila V. Butakova, Olga E. Trotsenko, Tatyana A. Zaitseva, Tatyana N. Karavyanskaya
    ЗДОРОВЬЕ НАСЕЛЕНИЯ И СРЕДА ОБИТАНИЯ - ЗНиСО / PUBLIC HEALTH AND LIFE ENVIRONMENT.2023; : 74.     CrossRef
  • Dual-responsive amplification strategy for ultrasensitive detection of norovirus in food samples: Combining magnetic relaxation switching and fluorescence assay
    Tao Wang, Sha Liu, Zixuan Zhou, Weiya Wang, Shuyue Ren, Baolin Liu, Zhixian Gao
    Sensors and Actuators B: Chemical.2023; 396: 134573.     CrossRef
Review
The “Cins” of Our Fathers: Rejuvenated Interest in Colicins to Combat Drug Resistance
Sumudu Upatissa , Robert J. Mitchell
J. Microbiol. 2023;61(2):145-158.   Published online February 8, 2023
DOI: https://doi.org/10.1007/s12275-023-00023-x
  • 54 View
  • 0 Download
  • 4 Web of Science
  • 4 Crossref
AbstractAbstract
With the growing threat of antibiotic resistance, researchers around the globe are seeking alternatives to stem bacterial pathogenesis. One such alternative is bacteriocins, proteins produced by bacterial species to inhibit the growth and viability of related bacterial species. With their diverse mechanisms, which include pore formation and nuclease activities, and narrow spectrum of activities, which limit their impact to only certain bacterial species, unlike many chemical antibiotics, bacteriocins offer intriguing possibilities to selectively control individual bacterial populations. Within this review, therefore, we highlight current research exploring the application of colicins and microcins, a subset of bacteriocins, with an emphasis on their activities against drug-resistant pathogens, both in in vitro and in vivo settings.

Citations

Citations to this article as recorded by  
  • Isolation, Genomics-Based and Biochemical Characterization of Bacteriocinogenic Bacteria and Their Bacteriocins, Sourced from the Gastrointestinal Tract of Meat-Producing Pigs
    Ester Sevillano, Irene Lafuente, Nuria Peña, Luis M. Cintas, Estefanía Muñoz-Atienza, Pablo E. Hernández, Juan Borrero
    International Journal of Molecular Sciences.2024; 25(22): 12210.     CrossRef
  • Intelligent Biological Networks: Improving Anti-Microbial Resistance Resilience through Nutritional Interventions to Understand Protozoal Gut Infections
    Avinash V. Karpe, David J. Beale, Cuong D. Tran
    Microorganisms.2023; 11(7): 1800.     CrossRef
  • Pairing Colicins B and E5 with Bdellovibrio bacteriovorus To Eradicate Carbapenem- and Colistin-Resistant Strains of Escherichia coli
    Sumudu Upatissa, Wonsik Mun, Robert J. Mitchell, Minsu Kim
    Microbiology Spectrum.2023;[Epub]     CrossRef
  • Bacteriocin-Producing Escherichia coli Q5 and C41 with Potential Probiotic Properties: In Silico, In Vitro, and In Vivo Studies
    Veronika S. Mihailovskaya, Dmitry A. Sutormin, Marina O. Karipova, Anna B. Trofimova, Victor A. Mamontov, Konstantin Severinov, Marina V. Kuznetsova
    International Journal of Molecular Sciences.2023; 24(16): 12636.     CrossRef

Journal of Microbiology : Journal of Microbiology
TOP